Modelling of removal characteristics and surface morphology formation in capacitively coupled atmospheric pressure plasma processing of fused silica optics

被引:12
作者
Li, Duo [1 ]
Li, Na [1 ]
Su, Xing [1 ]
Liu, Kan [1 ]
Ji, Peng [1 ]
Wang, Bo [1 ]
机构
[1] Harbin Inst Technol, Ctr Precis Engn, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Atmospheric pressure plasmas - Capacitively coupled - Discharge characteristics - In-depth understanding - Morphology formation - Multiphysics simulations - Removal characteristics - Surface chemical reactions;
D O I
10.1364/OME.9.001893
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Capacitively coupled atmospheric pressure plasma processing (CCAPPP) has been developed as a sub-aperture figuring tool for high precision fused silica optics, due to deterministic high rate material removal, small tool spot and no induced subsurface damage. In order to carry out an in-depth understanding on the removal and surface morphology formation mechanism of CCAPPP, this study aims to model the plasma discharge process and surface chemical reaction using the multi-physics simulation. The discharge characteristics such as electron density, electron temperature and particle density in the plasma are firstly obtained. Reaction gas components (CF4 and O-2) are also added, and the main chemical reactions are analyzed by zero-dimensional modelling. Then the distribution of active atoms (active F atoms, O atoms and CFx molecules) related to the removal process is simulated in the full CCAPPP model. Finally, experiments are carried out to verify the simulation results, indicating that the distribution of active F atoms on the workpiece surface determines the Gaussian removal profile and the ratio of O/CFx is the key factor affecting the surface morphology formation of CCAPPP. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1893 / 1906
页数:14
相关论文
共 23 条
[1]   Plasma Jet Machining A novel technology for precision machining of optical elements [J].
Arnold, Thomas ;
Boehm, Georg ;
Eichentopf, Inga-Maria ;
Janietz, Manuela ;
Meister, Johannes ;
Schindler, Axel .
VAKUUM IN FORSCHUNG UND PRAXIS, 2010, 22 (04) :10-16
[2]   Large Optics for the National Ignition Facility [J].
Baisden, P. A. ;
Atherton, L. J. ;
Hawley, R. A. ;
Land, T. A. ;
Menapace, J. A. ;
Miller, P. E. ;
Runkel, M. J. ;
Spaeth, M. L. ;
Stolz, C. J. ;
Suratwala, T. I. ;
Wegner, P. J. ;
Wong, L. L. .
FUSION SCIENCE AND TECHNOLOGY, 2016, 69 (01) :295-351
[3]   Rapid optical surface figuring using reactive atom plasma [J].
Castelli, M. ;
Jourdain, R. ;
Morantz, P. ;
Shore, P. .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2012, 36 (03) :467-476
[4]   Fluid jet polishing of optical surfaces [J].
Fahnle, OW ;
van Brug, H ;
Frankena, HJ .
APPLIED OPTICS, 1998, 37 (28) :6771-6773
[5]   Magnetorheological finishing (MRF) in commercial precision optics manufacturing [J].
Golini, D ;
Kordonski, WI ;
Dumas, P ;
Hogan, S .
OPTICAL MANUFACTURING AND TESTING III, 1999, 3782 :80-91
[6]  
Jha S, 2004, INT J MACH TOOL MANU, V44, P1019, DOI [10.1016/j.ijmachtools.2004.03.007, 10.1016/j.ijmachttools.2004.03.007]
[7]   Algorithm for ion beam figuring of low-gradient mirrors [J].
Jiao, Changjun ;
Li, Shengyi ;
Xie, Xuhui .
APPLIED OPTICS, 2009, 48 (21) :4090-4096
[8]   Reactive atom plasma (RAP) figuring machine for meter class optical surfaces [J].
Jourdain R. ;
Castelli M. ;
Shore P. ;
Sommer P. ;
Proscia D. .
Production Engineering, 2013, 7 (6) :665-673
[9]   Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope [J].
Li, Hongyu ;
Walker, David ;
Yu, Guoyu ;
Zhang, Wei .
APPLIED OPTICS, 2013, 52 (23) :5781-5787
[10]  
Lieberman M.A., 2005, PRINCIPLES PLASMA DI, DOI DOI 10.1002/0471724254