Lack of Gromov-hyperbolicity in small-world networks

被引:44
作者
Shang, Yilun [1 ]
机构
[1] Univ Texas San Antonio, Inst Cyber Secur, San Antonio, TX 78249 USA
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2012年 / 10卷 / 03期
关键词
Graph hyperbolicity; Small world; Complex networks;
D O I
10.2478/s11533-012-0032-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geometry of complex networks is closely related with their structure and function. In this paper, we investigate the Gromov-hyperbolicity of the Newman-Watts model of small-world networks. It is known that asymptotic Erdos-Renyi random graphs are not hyperbolic. We show that the Newman-Watts ones built on top of them by adding lattice-induced clustering are not hyperbolic as the network size goes to infinity. Numerical simulations are provided to illustrate the effects of various parameters on hyperbolicity in this model.
引用
收藏
页码:1152 / 1158
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[2]  
[Anonymous], 2001, CAMBRIDGE STUD ADV M
[3]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[4]  
Bermudo S, 2010, AIP CONF PROC, V1281, P575
[5]  
Brisdon M.R., 1999, GRUNDLEHREN MATH WIS, V319
[6]   Hierarchical structure and the prediction of missing links in networks [J].
Clauset, Aaron ;
Moore, Cristopher ;
Newman, M. E. J. .
NATURE, 2008, 453 (7191) :98-101
[7]   Some uses of the Farris transform in mathematics and phylogenetics - A review [J].
Dress, A. ;
Huber, K. T. ;
Moulton, V. .
ANNALS OF COMBINATORICS, 2007, 11 (01) :1-37
[8]   Δ additive and Δ ultra-additive maps, Gromov's trees, and the Farris transform [J].
Dress, A ;
Holland, B ;
Huber, KT ;
Koolen, JH ;
Moulton, V ;
Weyer-Menkhoff, J .
DISCRETE APPLIED MATHEMATICS, 2005, 146 (01) :51-73
[9]  
Gromov M., 1987, ESSAYS GROUP THEORY, P75, DOI 10.1007/978-1-4613-9586-7_3
[10]  
Jonckheere E, 2004, P AMER CONTR CONF, P976