Silicon quantum dots: surface matters

被引:200
作者
Dohnalova, K. [1 ]
Gregorkiewicz, T. [1 ]
Kusova, K. [2 ]
机构
[1] Univ Amsterdam, Van der Waals Zeeman Inst, NL-1098 XH Amsterdam, Netherlands
[2] Acad Sci Czech Republ, Inst Phys, CR-16200 Prague 6, Czech Republic
关键词
silicon quantum dots; quantum dot; surface chemistry; quantum confinement; ABSORPTION CROSS-SECTION; LIGHT-EMITTING DEVICES; TIME-RESOLVED PHOTOLUMINESCENCE; PULSED-LASER-ABLATION; 1.54; MU-M; POROUS-SILICON; SI NANOCRYSTALS; OPTICAL-PROPERTIES; SEMICONDUCTOR NANOCRYSTALS; STIMULATED-EMISSION;
D O I
10.1088/0953-8984/26/17/173201
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Silicon quantum dots (SiQDs) hold great promise for many future technologies. Silicon is already at the core of photovoltaics and microelectronics, and SiQDs are capable of efficient light emission and amplification. This is crucial for the development of the next technological frontiers-silicon photonics and optoelectronics. Unlike any other quantum dots (QDs), SiQDs are made of nontoxic and abundant material, offering one of the spectrally broadest emission tunabilities accessible with semiconductor QDs and allowing for tailored radiative rates over many orders of magnitude. This extraordinary flexibility of optical properties is achieved via a combination of the spatial confinement of carriers and the strong influence of surface chemistry. The complex physics of this material, which is still being unraveled, leads to new effects, opening up new opportunities for applications. In this review we summarize the latest progress in this fascinating research field, with special attention given to surface-induced effects, such as the emergence of direct bandgap transitions, and collective effects in densely packed QDs, such as space separated quantum cutting.
引用
收藏
页数:28
相关论文
共 440 条
[1]   Highly Luminescent and Nontoxic Amine-Capped Nanoparticles from Porous Silicon: Synthesis and Their Use in Biomedical Imaging [J].
Ahire, Jayshree H. ;
Wang, Qi ;
Coxon, Paul R. ;
Malhotra, Girish ;
Brydson, Rik ;
Chen, Rongjun ;
Chao, Yimin .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :3285-3292
[2]   Energy transfer between semiconductor nanocrystals: Validity of Forster's theory [J].
Allan, G. ;
Delerue, C. .
PHYSICAL REVIEW B, 2007, 75 (19)
[3]   Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: Role of defects [J].
Allan, Guy ;
Delerue, Christophe .
PHYSICAL REVIEW B, 2009, 79 (19)
[4]   Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis [J].
Alsharif, Naif H. ;
Berger, Christine E. M. ;
Varanasi, Satya S. ;
Chao, Yimin ;
Horrocks, Benjamin R. ;
Datta, Harish K. .
SMALL, 2009, 5 (02) :221-228
[5]   Silanization of Low-Temperature-Plasma Synthesized Silicon Quantum Dots for Production of a Tunable, Stable, Colloidal Solution [J].
Anderson, I. E. ;
Shircliff, R. A. ;
Macauley, C. ;
Smith, D. K. ;
Lee, B. G. ;
Agarwal, S. ;
Stradins, P. ;
Collins, R. T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) :3979-3987
[6]   Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum [J].
Anikeeva, Polina O. ;
Halpert, Jonathan E. ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2009, 9 (07) :2532-2536
[7]  
[Anonymous], 2010, NATURE PHOTON, V4, P491
[8]   Graded-size Si quantum dot ensembles for efficient light-emitting diodes [J].
Anopchenko, A. ;
Marconi, A. ;
Wang, M. ;
Pucker, G. ;
Bellutti, P. ;
Pavesi, L. .
APPLIED PHYSICS LETTERS, 2011, 99 (18)
[9]   Charge storage, photoluminescence, and cluster statistics in ensembles of Si quantum dots [J].
Antonova, I. V. ;
Gulyaev, M. ;
Savir, E. ;
Jedrzejewski, J. ;
Balberg, I. .
PHYSICAL REVIEW B, 2008, 77 (12)
[10]   Theory of resonance energy transfer involving nanocrystals: The role of high multipoles [J].
Baer, Roi ;
Rabani, Eran .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (18)