Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth

被引:48
作者
Colli, Pierluigi [1 ]
Gilardi, Gianni [1 ]
Rocca, Elisabetta [2 ,3 ]
Sprekels, Juergen [2 ,4 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[3] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[4] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
关键词
Tumor growth; Cahn-Hilliard System; Reaction-diffusion equation; Asymptotic analysis; Error estimates; MODELS; INVASION;
D O I
10.1016/j.nonrwa.2015.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn-Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in Colli et al. (2015), letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 28 条
[1]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[2]  
Brezis H., 1973, North-Holland Mathematics Studies, V5
[3]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[4]   Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture [J].
Chatelain, C. ;
Balois, T. ;
Ciarletta, P. ;
Ben Amar, M. .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]  
Colli P., 2015, DISCRETE CONTIN DY S, P1
[6]   ON A CAHN-HILLIARD TYPE PHASE FIELD SYSTEM RELATED TO TUMOR GROWTH [J].
Colli, Pierluigi ;
Gilardi, Gianni ;
Hilhorst, Danielle .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (06) :2423-2442
[7]  
Cristini V., 2010, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach
[8]   Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching [J].
Cristini, Vittorio ;
Li, Xiangrong ;
Lowengrub, John S. ;
Wise, Steven M. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (4-5) :723-763
[9]  
Dupaix C., 1998, Advances Math. Sci. Applications, V8, P115
[10]  
Dupaix C., 1999, J. Dyn. Differential Equations, V11, P333