Spectra of partial integral operators with a kernel of three variables

被引:3
作者
Eshkabilov, Yusup Kh. [1 ]
机构
[1] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2008年 / 6卷 / 01期
关键词
partial integral operator; partial integral equation; Fredholm integral equation; Fredholm determinant; Fredholm minor; spectrum; limit spectrum; point spectrum;
D O I
10.2478/s11533-008-0010-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega = [a, b] x [c, d] and T(1), T(2) be partial integral operators in C(Omega) : (T(1)f)(x, y) = integral(b)(a) k(1)( x, s, y)f(s, y) d s; (T(2)f)(x, y)= integral(d)(c) k(2)(x, ts, y)f(t, y) d t where k(1) and k(2) are continuous functions on [a, b] x Omega and Omega x [c, d], respectively. In this paper, concepts of determinants and minors of operators E-tau T(1), tau is an element of C and E-tau T(2), tau is an element of C are introduced as continuous functions on [a, b] and [c, d]; respectively. Here E is the identical operator in C(Omega) : In addition, Theorems on the spectra of bounded operators T(1), T(2), and T = T(1) + T(2) are proved.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 21 条
[1]  
Appell J, 1999, Z ANGEW MATH MECH, V79, P703, DOI 10.1002/(SICI)1521-4001(199910)79:10<703::AID-ZAMM703>3.0.CO
[2]  
2-W
[3]  
ESHKABILOV YK, 2006, TEOR MAT FIZ, V149, P228
[4]  
ESHKABILOV YK, 2005, UZBEK MAT ZH, V3, P104
[5]  
ESHKABILOV YK, 2006, ACTA NATL U UZBEKIST, V2, P17
[6]  
FENYO S, 1955, PUBL MATH, V4, P98
[7]  
Friedrichs K. O., 1965, Perturbation of Spectra in Hilbert Space, V3
[8]  
Kakichev VA, 1973, UKR MAT ZH, V25, P302
[9]  
KALITVIN AS, 1988, SPECTRUM LINEAR OPER, P43
[10]  
KALITVIN AS, 1984, SPECTRUM EIGENFUNCTI, V22, P35