Chemically intuited, large-scale screening of MOFs by machine learning techniques

被引:148
作者
Borboudakis, Giorgos [1 ,2 ]
Stergiannakos, Taxiarchis [3 ]
Frysali, Maria [3 ]
Klontzas, Emmanuel [3 ]
Tsamardinos, Ioannis [1 ,2 ,4 ]
Froudakis, George E. [3 ]
机构
[1] Univ Crete, Dept Comp Sci, Voutes Campus, GR-70013 Iraklion, Crete, Greece
[2] Gnosis Data Anal PC, Palaiokapa 65, GR-71305 Iraklion, Greece
[3] Univ Crete, Dept Chem, Voutes Campus, GR-70013 Iraklion, Crete, Greece
[4] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
关键词
METAL-ORGANIC FRAMEWORKS; PREDICTION; CHEMISTRY; DESIGN;
D O I
10.1038/s41524-017-0045-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal-Organic Framework for Ethylene Dimerization [J].
Bernales, Varinia ;
League, Aaron B. ;
Li, Zhanyong ;
Schweitzer, Neil M. ;
Peters, Aaron W. ;
Carlson, Rebecca K. ;
Hupp, Joseph T. ;
Cramer, Christopher J. ;
Farha, Omar K. ;
Gagliardi, Laura .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (41) :23576-23583
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J].
Chen, Binling ;
Yang, Zhuxian ;
Zhu, Yanqiu ;
Xia, Yongde .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) :16811-16831
[4]   Metal-Organic Frameworks for Air Purification of Toxic Chemicals [J].
DeCoste, Jared B. ;
Peterson, Gregory W. .
CHEMICAL REVIEWS, 2014, 114 (11) :5695-5727
[5]   Machine Learning Paradigms for Speech Recognition: An Overview [J].
Deng, Li ;
Li, Xiao .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (05) :1060-1089
[6]   Covalent organic frameworks (COFs): from design to applications [J].
Ding, San-Yuan ;
Wang, Wei .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (02) :548-568
[7]   Prediction of Individual Brain Maturity Using fMRI [J].
Dosenbach, Nico U. F. ;
Nardos, Binyam ;
Cohen, Alexander L. ;
Fair, Damien A. ;
Power, Jonathan D. ;
Church, Jessica A. ;
Nelson, Steven M. ;
Wig, Gagan S. ;
Vogel, Alecia C. ;
Lessov-Schlaggar, Christina N. ;
Barnes, Kelly Anne ;
Dubis, Joseph W. ;
Feczko, Eric ;
Coalson, Rebecca S. ;
Pruett, John R., Jr. ;
Barch, Deanna M. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. .
SCIENCE, 2010, 329 (5997) :1358-1361
[8]   Computational Chemistry Methods for Nanoporous Materials [J].
Evans, Jack D. ;
Fraux, Guillaume ;
Gaillac, Romain ;
Kohen, Daniela ;
Trousselet, Fabien ;
Vanson, Jean-Mathieu ;
Coudert, Francois-Xavier .
CHEMISTRY OF MATERIALS, 2017, 29 (01) :199-212
[9]  
Farrusseng D, 2011, METAL-ORGANIC FRAMEWORKS: APPLICATIONS FROM CATALYSIS TO GAS STORAGE, P1, DOI 10.1002/9783527635856
[10]  
Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133