A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [41] HIGH-ORDER MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    MULTISCALE MODELING & SIMULATION, 2014, 12 (02) : 650 - 666
  • [42] Multiscale extended finite element method for deformable fractured porous media
    Xu, Fanxiang
    Hajibeygi, Hadi
    Sluys, Lambertus J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [43] Sparse tensor product finite element method for nonlinear multiscale variational inequalities of monotone type
    Tan, Wee Chin
    Viet Ha Hoang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (03) : 1875 - 1907
  • [44] Convergence analysis of a new multiscale finite element method for the stationary Navier-Stokes problem
    Wen, Juan
    He, Yinnian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (01) : 1 - 25
  • [45] A COUPLING OF MULTISCALE FINITE ELEMENT METHOD AND ISOGEOMETRIC ANALYSIS
    Dryzek, M.
    Cecot, W.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2020, 18 (04) : 439 - 454
  • [46] A generalized multiscale finite element method for the Brinkman equation
    Galvis, Juan
    Li, Guanglian
    Shi, Ke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 294 - 309
  • [47] Validation of the multiscale mixed finite-element method
    Pal, Mayur
    Lamine, Sadok
    Lie, Knut-Andreas
    Krogstad, Stein
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (04) : 206 - 223
  • [48] A mixed multiscale spectral generalized finite element method
    Alber, Christian
    Ma, Chupeng
    Scheichl, Robert
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 1 - 40
  • [49] OVERSAMPLING FOR THE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Peterseim, Daniel
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1149 - 1175
  • [50] Finite Element Method for the Stokes-Darcy Problem with a New Boundary Condition
    El Moutea, O.
    El Amri, H.
    El Akkad, A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2020, 13 (02) : 136 - 151