A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [21] A MULTISCALE MORTAR MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD
    Wheeler, Mary Fanett
    Xue, Guangri
    Yotov, Ivan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 759 - 796
  • [22] Towards asphalt concrete modeling by the multiscale finite element method
    Klimczak, Marek
    Cecot, Witold
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2020, 171
  • [23] Adaptive finite element heterogeneous multiscale method for homogenization problems
    Abdulle, A.
    Nonnenmacher, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (37-40) : 2710 - 2726
  • [24] Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
    Chung, Eric
    Efendiev, Yalchin
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 320 : 69 - 95
  • [25] Mixed Generalized Multiscale Finite Element Method for a Simplified Magnetohydrodynamics Problem in Perforated Domains
    Alekseev, Valentin
    Tang, Qili
    Vasilyeva, Maria
    Chung, Eric T.
    Efendiev, Yalchin
    COMPUTATION, 2020, 8 (02) : 1 - 15
  • [26] A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
    Xie, Z. Q.
    Zhang, H. W.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2013, 11 (04) : 369 - 387
  • [27] A residual-driven local iterative corrector scheme for the multiscale finite element method
    Nguyen, Lam H.
    Schillinger, Dominik
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 377 : 60 - 88
  • [28] Multiscale Finite Element Method for heat transfer problem during artificial ground freezing
    Vasilyeva, Maria
    Stepanov, Sergei
    Spiridonov, Denis
    Vasil'ev, Vasiliy
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
  • [29] Meshfree Generalized Multiscale Finite Element Method
    Nikiforov, Djulustan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [30] An Online Generalized Multiscale Finite Element Method for Dual-continuum Unsaturated Filtration Problem in Domains with Rough Boundaries
    Spiridonov, D. A.
    Huang, J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (10) : 4170 - 4182