A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [1] A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints
    Brenner, Susanne C.
    Garay, Jose C.
    Sung, Li-yeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)
  • [2] A MULTISCALE FINITE ELEMENT METHOD FOR NEUMANN PROBLEMS IN POROUS MICROSTRUCTURES
    Brown, Donald L.
    Taralova, Vasilena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (05): : 1299 - 1326
  • [3] A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients
    Chen, Yanping
    Huang, Yunqing
    Liu, Wenbin
    Yan, Ningning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 297 - 313
  • [4] Multiscale Finite Element Methods for Flows on Rough Surfaces
    Efendiev, Yalchin
    Galvis, Juan
    Pauletti, M. Sebastian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 979 - 1000
  • [5] ERROR ESTIMATE OF MULTISCALE FINITE ELEMENT METHOD FOR PERIODIC MEDIA REVISITED
    Ming, Pingbing
    Song, Siqi
    MULTISCALE MODELING & SIMULATION, 2024, 22 (01) : 106 - 124
  • [6] AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    MULTISCALE MODELING & SIMULATION, 2014, 12 (03) : 1078 - 1107
  • [7] Mixed Generalized Multiscale Finite Element Method for flow problem in thin domains
    Spiridonov, Denis
    Vasilyeva, Maria
    Wang, Min
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [8] REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    International Journal for Multiscale Computational Engineering, 2016, 14 (06) : 535 - 554
  • [9] Adaptive reduced basis finite element heterogeneous multiscale method
    Abdulle, Assyr
    Bai, Yun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 257 : 203 - 220
  • [10] A MULTISCALE FINITE ELEMENT METHOD FOR THE SCHRODINGER EQUATION WITH MULTISCALE POTENTIALS
    Chen, Jingrun
    Ma, Dingjiong
    Zhang, Zhiwen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) : B1115 - B1136