A generalization of NUT digital (0,1)-sequences and best possible lower bounds for star discrepancy

被引:1
作者
Faure, Henri [1 ]
Pillichshammer, Friedrich [2 ]
机构
[1] Univ Aix Marseille, CNRS, Inst Math Luminy, F-13288 Marseille 09, France
[2] Univ Linz, Inst Finanzmath, A-4040 Linz, Austria
关键词
irregularity of distribution; discrepancy; diaphony; digital sequence; van der Corput sequence; SEQUENCES; DIAPHONY; SERIES; VAN;
D O I
10.4064/aa158-4-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:321 / 340
页数:20
相关论文
共 31 条
[1]  
[Anonymous], 1974, UNIFORM DISTRIBUTION
[2]  
[Anonymous], 1997, LECT NOTES MATH
[3]  
Beck J., 1987, Cambridge Tracts in Math., V89
[4]  
BEJIAN R, 1978, CR ACAD SCI A MATH, V286, P135
[5]   DECREASE OF THE DISCREPANCY OF ANY SERIES ON T [J].
BEJIAN, R .
ACTA ARITHMETICA, 1982, 41 (02) :185-202
[6]   DISCREPANCY AND DIAPHONY IN ONE DIMENSION [J].
CHAIX, H ;
FAURE, H .
ACTA ARITHMETICA, 1993, 63 (02) :103-141
[7]  
Dick J., 2010, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
[8]   Precise distribution properties of the van der Corput sequence and related sequences [J].
Drmota, M ;
Larcher, G ;
Pillichshammer, F .
MANUSCRIPTA MATHEMATICA, 2005, 118 (01) :11-41
[9]  
DUPAIN Y, 1984, TOPICS CLASSICAL NUM, V1, P355
[10]   Selection criteria for (random) generation of digital (O,s)-sequences [J].
Faure, H .
Monte Carlo and Quasi-Monte Carlo Methods 2004, 2006, :113-126