Predictive radiogenomics modeling of EGFR mutation status in lung cancer

被引:129
作者
Gevaert, Olivier [1 ,2 ]
Echegaray, Sebastian [3 ]
Khuong, Amanda [4 ]
Hoang, Chuong D. [4 ]
Shrager, Joseph B. [4 ]
Jensen, Kirstin C. [5 ,6 ]
Berry, Gerald J. [5 ]
Guo, H. Henry [3 ]
Lau, Charles [7 ]
Plevritis, Sylvia K. [3 ]
Rubin, Daniel L. [3 ]
Napel, Sandy [3 ]
Leung, Ann N. [3 ]
机构
[1] Stanford Univ, Dept Med, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[4] NCI, Thorac & GI Oncol Branch, CCR, NIH, Bethesda, MD 20892 USA
[5] Stanford Univ, Med Ctr, Dept Pathol, Stanford, CA 94305 USA
[6] Vet Affairs Palo Alto Hlth Care Syst, Pathol & Lab Serv, Palo Alto, CA USA
[7] Stanford Univ, Vet Affairs Palo Alto Hlth Care Syst, Dept Radiol, Palo Alto, CA USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
GROWTH-FACTOR RECEPTOR; IMAGING FEATURES; KRAS MUTATIONS; ADENOCARCINOMA; ASSOCIATIONS; RADIOMICS; PHENOTYPE; SUBTYPES; IMPACT; TUMORS;
D O I
10.1038/srep41674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular analysis of the mutation status for EGFR and KRAS are now routine in the management of non-small cell lung cancer. Radiogenomics, the linking of medical images with the genomic properties of human tumors, provides exciting opportunities for non-invasive diagnostics and prognostics. We investigated whether EGFR and KRAS mutation status can be predicted using imaging data. To accomplish this, we studied 186 cases of NSCLC with preoperative thin-slice CT scans. A thoracic radiologist annotated 89 semantic image features of each patient's tumor. Next, we built a decision tree to predict the presence of EGFR and KRAS mutations. We found a statistically significant model for predicting EGFR but not for KRAS mutations. The test set area under the ROC curve for predicting EGFR mutation status was 0.89. The final decision tree used four variables: emphysema, airway abnormality, the percentage of ground glass component and the type of tumor margin. The presence of either of the first two features predicts a wild type status for EGFR while the presence of any ground glass component indicates EGFR mutations. These results show the potential of quantitative imaging to predict molecular properties in a non-invasive manner, as CT imaging is more readily available than biopsies.
引用
收藏
页数:8
相关论文
共 37 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles
    Ashraf, Ahmed Bilal
    Daye, Dania
    Gavenonis, Sara
    Mies, Carolyn
    Feldman, Michael
    Rosen, Mark
    Kontos, Despina
    [J]. RADIOLOGY, 2014, 272 (02) : 374 - 384
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [5] Non-small-cell lung cancers: a heterogeneous set of diseases
    Chen, Zhao
    Fillmore, Christine M.
    Hammerman, Peter S.
    Kim, Carla F.
    Wong, Kwok-Kin
    [J]. NATURE REVIEWS CANCER, 2014, 14 (08) : 535 - 546
  • [6] Advanced Lung Adenocarcinoma Harboring a Mutation of the Epidermal Growth Factor Receptor: CT Findings after Tyrosine Kinase Inhibitor Therapy
    Choi, Chang-Min
    Kim, Mi Young
    Lee, Jae Cheol
    Kim, Hwa Jung
    [J]. RADIOLOGY, 2014, 270 (02) : 574 - 582
  • [7] Air bronchogram: A potential indicator of epidermal growth factor receptor mutation in pulmonary subsolid nodules
    Dai, Jie
    Shi, Jingyun
    Soodeen-Lalloo, Adiilah K.
    Zhang, Peng
    Yang, Yang
    Wu, Chunyan
    Jiang, Sen
    Jia, Xiaoli
    Fei, Ke
    Jiang, Gening
    [J]. LUNG CANCER, 2016, 98 : 22 - 28
  • [8] Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine
    Dias-Santagata, Dora
    Akhavanfard, Sara
    David, Serena S.
    Vernovsky, Kathy
    Kuhlmann, Georgiana
    Boisvert, Susan L.
    Stubbs, Hannah
    McDermott, Ultan
    Settleman, Jeffrey
    Kwak, Eunice L.
    Clark, Jeffrey W.
    Isakoff, Steven J.
    Sequist, Lecia V.
    Engelman, Jeffrey A.
    Lynch, Thomas J.
    Haber, Daniel A.
    Louis, David N.
    Ellisen, Leif W.
    Borger, Darrell R.
    Lafrate, A. John
    [J]. EMBO MOLECULAR MEDICINE, 2010, 2 (05) : 146 - 158
  • [9] The impact of intracytoplasmic mucin in lung adenocarcinoma with pneumonic radiological presentation
    Duruisseaux, Michael
    Antoine, Martine
    Rabbe, Nathalie
    Poulot, Virginie
    Fleury-Feith, Jocelyne
    Vieira, Thibault
    Lavole, Armelle
    Cadranel, Jacques
    Wislez, Marie
    [J]. LUNG CANCER, 2014, 83 (03) : 334 - 340
  • [10] EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples
    Ellison, Gillian
    Zhu, Guanshan
    Moulis, Alexandros
    Dearden, Simon
    Speake, Georgina
    McCormack, Rose
    [J]. JOURNAL OF CLINICAL PATHOLOGY, 2013, 66 (02) : 79 - 89