Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems

被引:20
作者
Chhetri, M. [1 ]
Drabek, P. [2 ]
Shivaji, R. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27402 USA
[2] Univ W Bohemia, KMA FAV, Plzen 30614, Czech Republic
关键词
p-Laplacian; systems; semipositone; superlinear; positive solutions;
D O I
10.1017/S0308210515000220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quasilinear elliptic problem of the form -Delta pu = lambda f(u) in Omega, u = 0 on partial derivative Omega, where lambda > 0 is a parameter, 1 < p < 2 and Omega is a strictly convex bounded domain in R-N, N > p, with C-2 boundary partial derivative Omega. The nonlinearity f: [0, infinity) -> R is a continuous function that is semipositone (f(0) < 0) and p-superlinear at infinity. Using degree theory, combined with a rescaling argument and uniform L-infinity a priori bound, we establish the existence of a positive solution for lambda small. Moreover, we show that there exists a connected component of positive solutions bifurcating from infinity at lambda = 0. We also extend our study to systems.
引用
收藏
页码:925 / 936
页数:12
相关论文
共 21 条
[1]  
Allegretto W., 1992, DIFFERENTIAL INTEGRA, V5, P95
[2]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[3]  
Ambrosetti A., 1994, DIFFERENTIAL INTEGRA, V7, P655
[4]   A priori estimates and continuation methods for positive solutions of p-Laplace equations [J].
Azizieh, C ;
Clément, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :213-245
[5]   Existence and a priori estimates for positive solutions of p-Laplace systems [J].
Azizieh, U ;
Clément, P ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :422-442
[6]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[7]  
Chhetri M, 2003, DISCRETE CONT DYN S, V9, P1063
[8]   Existence of positive solutions for a class of superlinear semipositone systems [J].
Chhetri, Maya ;
Girg, Petr .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) :781-788
[9]   Existence and nonexistence of positive solutions for a class of superlinear semipositone systems [J].
Chhetri, Maya ;
Girg, Petr .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4984-4996
[10]  
Dai G., 2012, INT J MATH MATH SCI, V2012