Instrumental variables estimation and inference in the presence of many exogenous regressors

被引:15
作者
Anatolyev, Stanislav [1 ]
机构
[1] New Econ Sch, Moscow 117418, Russia
关键词
2SLS estimator; AndersonRubin test; Bias correction; Instrumental variables regression; J test; Kleibergen test; LIML estimator; Many exogenous regressors; Many instruments; T test; SPECIFICATION TEST; DISTRIBUTIONS; DEMAND; APPROXIMATIONS; MODELS; NUMBER;
D O I
10.1111/j.1368-423X.2012.00383.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a standard instrumental variables model contaminated by the presence of a large number of exogenous regressors. In an asymptotic framework where this number is proportional to the sample size, we study the impact of their ratio on the validity of existing estimators and tests. When the instruments are few, the inference using the conventional 2SLS estimator and associated t and J statistics, as well as the AndersonRubin and Kleibergen tests, is still valid. When the instruments are many, the LIML estimator remains consistent, but the presence of many exogenous regressors changes its asymptotic variance. Moreover, the conventional bias correction of the 2SLS estimator is no longer appropriate. We provide asymptotically correct versions of bias correction for the 2SLS estimator, derive its asymptotically correct variance estimator, extend the HansenHausmanNewey LIML variance estimator to the case of many exogenous regressors, and propose asymptotically valid modifications of the J overidentification tests based on the LIML and bias-corrected 2SLS estimators.
引用
收藏
页码:27 / 72
页数:46
相关论文
共 47 条
  • [31] Semiparametric efficient G-estimation with invalid instrumental variables
    Sun, B.
    Liu, Z.
    Tchetgen, E. J. Tchetgen
    BIOMETRIKA, 2023, 110 (04) : 953 - 971
  • [32] Weak-instrument robust inference for two-sample instrumental variables regression
    Choi, Jaerim
    Gu, Jiaying
    Shen, Shu
    JOURNAL OF APPLIED ECONOMETRICS, 2018, 33 (01) : 109 - 125
  • [33] Simple many-instruments robust standard errors through concentrated instrumental variables
    Bekker, Paul
    Wansbeek, Tom
    ECONOMICS LETTERS, 2016, 149 : 52 - 55
  • [34] Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter
    Horowitz, Joel L.
    JOURNAL OF ECONOMETRICS, 2014, 180 (02) : 158 - 173
  • [35] Long difference instrumental variables estimation for dynamic panel models with fixed effects
    Hahn, Jinyong
    Hausman, Jerry
    Kuersteiner, Guido
    JOURNAL OF ECONOMETRICS, 2007, 140 (02) : 574 - 617
  • [36] Bayesian Inference for Correlations in the Presence of Measurement Error and Estimation Uncertainty
    Matzke, Dora
    Ly, Alexander
    Selker, Ravi
    Weeda, Wouter D.
    Scheibehenne, Benjamin
    Lee, Michael D.
    Wagenmakers, Eric-Jan
    COLLABRA-PSYCHOLOGY, 2017, 3 (01)
  • [37] Estimation of causal effects with small data in the presence of trapdoor variables
    Helske, Jouni
    Tikka, Santtu
    Karvanen, Juha
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2021, 184 (03) : 1030 - 1051
  • [38] Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
    Cheng, Debo
    Xu, Ziqi
    Li, Jiuyong
    Liu, Lin
    Liu, Jixue
    Gao, Wentao
    Le, Thuc Duy
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 11480 - 11488
  • [39] Unifying Estimation and Inference for Linear Regression with Stationary and Integrated or Near-Integrated Variables
    Hong, Shaoxin
    Henderson, Daniel J.
    Jiang, Jiancheng
    Ni, Qingshan
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 22 (05) : 1397 - 1420
  • [40] Estimation of plant density based on presence/absence data using hybrid inference
    Goze, Lena
    Ekstrom, Magnus
    Sandring, Saskia
    Jonsson, Bengt -Gunnar
    Wallerman, Jorgen
    Stahl, Goran
    ECOLOGICAL INFORMATICS, 2024, 80