Instrumental variables estimation and inference in the presence of many exogenous regressors

被引:14
|
作者
Anatolyev, Stanislav [1 ]
机构
[1] New Econ Sch, Moscow 117418, Russia
来源
ECONOMETRICS JOURNAL | 2013年 / 16卷 / 01期
关键词
2SLS estimator; AndersonRubin test; Bias correction; Instrumental variables regression; J test; Kleibergen test; LIML estimator; Many exogenous regressors; Many instruments; T test; SPECIFICATION TEST; DISTRIBUTIONS; DEMAND; APPROXIMATIONS; MODELS; NUMBER;
D O I
10.1111/j.1368-423X.2012.00383.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a standard instrumental variables model contaminated by the presence of a large number of exogenous regressors. In an asymptotic framework where this number is proportional to the sample size, we study the impact of their ratio on the validity of existing estimators and tests. When the instruments are few, the inference using the conventional 2SLS estimator and associated t and J statistics, as well as the AndersonRubin and Kleibergen tests, is still valid. When the instruments are many, the LIML estimator remains consistent, but the presence of many exogenous regressors changes its asymptotic variance. Moreover, the conventional bias correction of the 2SLS estimator is no longer appropriate. We provide asymptotically correct versions of bias correction for the 2SLS estimator, derive its asymptotically correct variance estimator, extend the HansenHausmanNewey LIML variance estimator to the case of many exogenous regressors, and propose asymptotically valid modifications of the J overidentification tests based on the LIML and bias-corrected 2SLS estimators.
引用
收藏
页码:27 / 72
页数:46
相关论文
共 50 条
  • [21] Mendelian randomisation and instrumental variables for causal inference
    Sheehan, NA
    Didelez, V
    GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 277 - 277
  • [22] Inference in Nonparametric Instrumental Variables With Partial Identification
    Santos, Andres
    ECONOMETRICA, 2012, 80 (01) : 213 - 275
  • [23] Random effects estimators with many instrumental variables
    Chamberlain, G
    Imbens, G
    ECONOMETRICA, 2004, 72 (01) : 295 - 306
  • [24] Indirect Inference with endogenously missing exogenous variables
    Chaudhuri, Saraswata
    Frazier, David T.
    Renault, Eric
    JOURNAL OF ECONOMETRICS, 2018, 205 (01) : 55 - 75
  • [25] Estimation of nonseparable models with censored dependent variables and endogenous regressors
    Taylor, Luke
    Otsu, Taisuke
    ECONOMETRIC REVIEWS, 2019, 38 (01) : 4 - 24
  • [26] INFERENCE IN INSTRUMENTAL VARIABLE MODELS WITH HETEROSKEDASTICITY AND MANY INSTRUMENTS
    Crudu, Federico
    Mellace, Giovanni
    Sandor, Zsolt
    ECONOMETRIC THEORY, 2021, 37 (02) : 281 - 310
  • [27] Nonparametric estimation of regression functions in the presence of irrelevant regressors
    Hall, Peter
    Li, Qi
    Racine, Jeffrey S.
    REVIEW OF ECONOMICS AND STATISTICS, 2007, 89 (04) : 784 - 789
  • [28] Estimation and inference of error-prone covariate effect in the presence of confounding variables
    Liu, Jianxuan
    Ma, Yanyuan
    Zhu, Liping
    Carroll, Raymond J.
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 480 - 501
  • [29] NONPARAMETRIC INSTRUMENTAL VARIABLES AND REGULAR ESTIMATION
    Hahn, Jinyong
    Liao, Zhipeng
    ECONOMETRIC THEORY, 2018, 34 (03) : 574 - 597
  • [30] Instrumental variables and GMM: Estimation and testing
    Baum, Christopher F.
    Schaffer, Mark E.
    Stillman, Steven
    STATA JOURNAL, 2003, 3 (01): : 1 - 31