Understanding the Kauffman bracket skein module

被引:52
作者
Bullock, D [1 ]
Frohman, C
Kania-Bartoszynska, J
机构
[1] Boise State Univ, Dept Math, Boise, ID 83725 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52245 USA
关键词
knot; link; 3-manifold; skein module; character theory;
D O I
10.1142/S0218216599000183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kauffman bracket skein module K(M) of a g-manifold M is defined over formal power series in the variable h by letting A = e(h/4). For a compact oriented surface F, it is shown that K(F x I) is a quantization of the SL2(C)-characters of the fundamental group of F corresponding to a geometrically defined Poisson bracket. Finite type invariants for unoriented knots and links are defined and obtained from topologically free Kauffman bracket modules. A structure theorem for K(M) is given in terms of the affine SL2(C)-characters of pi(1)(M). It follows for compact M that K(M) can be generated as a module by cables on a finite set of knots. Moreover, if M contains no incompressible surfaces, the module is topologically finitely generated.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 27 条
[1]  
ALEKSEEV AY, HEPTH9408097
[2]  
ALEKSEEV AY, HEPTH9403066
[3]  
Biswas I., 1993, INT J MATH, V4, P535
[4]   3-MANIFOLD INVARIANTS DERIVED FROM THE KAUFFMAN BRACKET [J].
BLANCHET, C ;
HABEGGER, N ;
MASBAUM, G ;
VOGEL, P .
TOPOLOGY, 1992, 31 (04) :685-699
[5]  
BUFFENOIR E, 1995, COMM MATH PHYS, V170
[6]  
BUFFENOIR E, QALG9507001
[7]  
BUFFENOIR E, QALG9509020
[8]  
BULLOCK D, FINITE SET GENERATOR
[9]  
BULLOCK D, QALG9604014
[10]  
GELCA R, TOPOLOGICAL QUANTUM