Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation

被引:148
|
作者
Balboa, Diego [1 ]
Weltner, Jere [1 ]
Eurola, Solja [1 ]
Trokovic, Ras [1 ]
Wartiovaara, Kirmo [1 ,4 ]
Otonkoski, Timo [1 ,2 ,3 ]
机构
[1] Univ Helsinki, Res Programs Unit, Mol Neurol, Biomedicum Stem Cell Ctr, FIN-00290 Helsinki, Finland
[2] Univ Helsinki, Childrens Hosp, FIN-00290 Helsinki, Finland
[3] Univ Helsinki, Cent Hosp, FIN-00290 Helsinki, Finland
[4] Univ Helsinki, Cent Hosp, Clin Genet, HUSLAB, FIN-00290 Helsinki, Finland
来源
STEM CELL REPORTS | 2015年 / 5卷 / 03期
基金
芬兰科学院;
关键词
TRANSCRIPTION; CRISPR; CAS9; PROTEIN; TALE; REPRESSION; VECTOR; SYSTEM;
D O I
10.1016/j.stemcr.2015.08.001
中图分类号
Q813 [细胞工程];
学科分类号
摘要
CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR) destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.
引用
收藏
页码:448 / 459
页数:12
相关论文
共 50 条
  • [1] A Novel Light-Inducible CRISPR/dCas9 System for Controlling Gene Expression
    Duke, Corey G.
    Southern, Nicholas T.
    Savell, Katherine E.
    Sultan, Faraz A.
    Day, Jeremy J.
    MOLECULAR THERAPY, 2019, 27 (04) : 107 - 107
  • [2] Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels
    Depardieu, Florence
    Bikard, David
    METHODS, 2020, 172 : 61 - 75
  • [3] CRISPR/dCas9 Activated Expression of Cardiomyocyte Differentiation Factors in CDCs in Myocardial Infarctions
    Sano, T.
    Ishigami, S.
    Bandaru, S.
    Ito, T.
    Sano, S.
    EUROPEAN HEART JOURNAL, 2019, 40 : 3275 - 3275
  • [4] Exploring the virulence gene interactome withCRISPR/dCas9 in the human malaria parasite
    Bryant, Jessica M.
    Baumgarten, Sebastian
    Dingli, Florent
    Loew, Damarys
    Sinha, Ameya
    Claes, Aurelie
    Preiser, Peter R.
    Dedon, Peter C.
    Scherf, Artur
    MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (08)
  • [5] Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems
    Wang, Xiao-Gang
    Ma, San-Yuan
    Chang, Jia-Song
    Shi, Run
    Wang, Ruo-Lin
    Zhao, Ping
    Xia, Qing-You
    INSECT SCIENCE, 2019, 26 (06) : 983 - 990
  • [6] Inducible gene expression control using CRISPR/dCas9 and antiviral protease inhibitors
    Tague, Elliot
    Ngo, John
    PROTEIN SCIENCE, 2017, 26 : 200 - 200
  • [7] A Cre-Dependent CRISPR/dCas9 System for Gene Expression Regulation in Neurons
    Carullo, Nancy V. N.
    Hinds, Jenna E.
    Revanna, Jasmin S.
    Tuscher, Jennifer J.
    Bauman, Allison J.
    Day, Jeremy J.
    ENEURO, 2021, 8 (04)
  • [8] Inducible Gene Expression and Protein Localization using CRISPR/DCAS9 and Antiviral Protease Inhibitors
    Tague, Elliot P.
    Ngo, John
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 225A - 225A
  • [9] Use of the CRISPRi/dCas9:: KRAB system to suppress gene expression as an alternative to conditional gene deletion.
    Macleod, Ryan
    OBrien, Charles
    JOURNAL OF BONE AND MINERAL RESEARCH, 2017, 32 : S70 - S71
  • [10] Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers
    Gao, Xuefei
    Tsang, Jason C. H.
    Gaba, Fortis
    Wu, Donghai
    Lu, Liming
    Liu, Pentao
    NUCLEIC ACIDS RESEARCH, 2014, 42 (20)