Visibility Estimation in Point Clouds with Variable Density

被引:6
作者
Biasutti, P. [1 ,2 ,3 ]
Bugeau, A. [1 ]
Aujol, J-F [2 ]
Bredif, M. [3 ]
机构
[1] Univ Bordeaux, LaBRI, INP, CNRS,UMR 5800, F-33400 Talence, France
[2] Univ Bordeaux, IMB, INP, CNRS,UMR 5251, F-33400 Talence, France
[3] Univ Paris Est, LASTIG GEOVIS, IGN, ENSG, F-94160 St Mande, France
来源
VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4 | 2019年
基金
欧盟地平线“2020”;
关键词
3D Point Cloud; Visibility; Visualization; LiDAR; Dataset; Benchmark; SURFACE RECONSTRUCTION; REGISTRATION; LIDAR;
D O I
10.5220/0007308600270035
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Estimating visibility in point clouds has many applications such as visualization, surface reconstruction and scene analysis through fusion of LiDAR point clouds and images. However, most current works rely on methods that require strong assumptions on the point cloud density, which are not valid for LiDAR point clouds acquired from mobile mapping systems, leading to low quality of point visibility estimations. This work presents a novel approach for the estimation of the visibility of a point cloud from a viewpoint. The method is designed to be fully automatic and it makes no assumption on the point cloud density. The visibility of each point is estimated by considering its screen-space neighborhood from the given viewpoint. Our results show that our approach succeeds better in estimating the visibility on real-world data acquired using LiDAR scanners. We evaluate our approach by comparing its results to a new manually annotated dataset, which we make available online.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 2012, Revue Francaise de Photogrammetrie et de Teledetection, DOI DOI 10.52638/RFPT.2012.63
[2]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[3]   Ten Years of Pedestrian Detection, What Have We Learned? [J].
Benenson, Rodrigo ;
Omran, Mohamed ;
Hosang, Jan ;
Schiele, Bernt .
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 :613-627
[4]   A Survey of Surface Reconstruction from Point Clouds [J].
Berger, Matthew ;
Tagliasacchi, Andrea ;
Seversky, Lee M. ;
Alliez, Pierre ;
Guennebaud, Gael ;
Levine, Joshua A. ;
Sharf, Andrei ;
Silva, Claudio T. .
COMPUTER GRAPHICS FORUM, 2017, 36 (01) :301-329
[5]   Joint inpainting of depth and reflectance with visibility estimation [J].
Bevilacqua, Marco ;
Aujol, Jean-Francois ;
Biasutti, Pierre ;
Bredif, Mathieu ;
Bugeau, Aurelie .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 125 :16-32
[6]  
Bouchiba H., 2017, EUR ANN C EUR ASS CO, P1
[7]  
Eigen D, 2014, ADV NEUR IN, V27
[8]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]   Fine scale image registration in large-scale urban LIDAR point sets [J].
Guislain, Maximilien ;
Digne, Julie ;
Chaine, Raphaelle ;
Monnier, Gilles .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 157 :90-102