Separation of diverse alkenes from C2-C4 alkanes through nanoporous graphene membranes via local size sieving

被引:12
作者
Xu, Yinxiang [1 ,2 ,3 ]
Xu, Junbo [3 ]
Yang, Chao [1 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China
[2] Sichuan Univ Sci & Engn, Coll Mech Engn, Zigong 643000, Sichuan, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Inst Proc Engn, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Alkane/alkene separation; Local size sieving; Competitive adsorption; Nanoporous graphene membrane; METAL-ORGANIC FRAMEWORK; MOLECULAR-DYNAMICS; MIXED MATRIX; CO2; SIMULATIONS; CH4; ADSORPTION; ULTRATHIN; METHANE;
D O I
10.1016/j.memsci.2019.05.005
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Compared with the specialized membrane applied to separate one type of mixture, the membranes that are able to selectively separate diverse alkane/alkene mixtures are more valuable in chemical and petroleum industry. Herein, we explored nine nanoporous graphene (NG) membranes including three basic pores and six expanded pores, which exhibit excellent permeance and ultrahigh selectivity for C2H4, C3H6 and C-4 H-6 over the corresponding alkanes. From the thermodynamic and dynamic insights, the local size sieving and competitive adsorption mechanisms play the crucial role in capturing alkenes but rejecting alkanes. The flat alkenyl blocks are smaller than the alkyl blocks, which is beneficial for alkenes to access and cross the confined pores. The above conclusions are further applicable for multilayer NG membranes with the one-dimensional channel. We anticipate our results of expanding pores with higher permeability while maintaining the selectivity can provide a valuable guidance for experimenters to fabricate effective nanopores with a certain tolerance in the future.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 40 条
[1]  
Bachman JE, 2016, NAT MATER, V15, P845, DOI [10.1038/NMAT4621, 10.1038/nmat4621]
[2]   Multilayer Nanoporous Graphene Membranes for Water Desalination [J].
Cohen-Tanugi, David ;
Lin, Li-Chiang ;
Grossman, Jeffrey C. .
NANO LETTERS, 2016, 16 (02) :1027-1033
[3]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[4]   Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation [J].
Duan, Ke ;
Wang, Jing ;
Zhang, Yatao ;
Liu, Jindun .
JOURNAL OF MEMBRANE SCIENCE, 2019, 572 :588-595
[5]   Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques [J].
Faiz, Rami ;
Li, Kang .
CHEMICAL ENGINEERING SCIENCE, 2012, 73 :261-284
[6]   Methane-selective nanoporous graphene membranes for gas purification [J].
Hauser, Andreas W. ;
Schwerdtfeger, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (38) :13292-13298
[7]   Single-layer graphene membranes by crack-free transfer for gas mixture separation [J].
Huang, Shiqi ;
Dakhchoune, Mostapha ;
Luo, Wen ;
Oveisi, Emad ;
He, Guangwei ;
Rezaei, Mojtaba ;
Zhao, Jing ;
Alexander, Duncan T. L. ;
Zuettel, Andreas ;
Strano, Michael S. ;
Agrawal, Kumar Varoon .
NATURE COMMUNICATIONS, 2018, 9
[8]   Propylene/propane separation by porous graphene membrane: Molecular dynamic simulation and first-principle calculation [J].
Jiang, Chi ;
Hou, Yingfei ;
Wang, Ning ;
Li, Lijun ;
Lin, Ligang ;
Niu, Qingshan Jason .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 78 :477-484
[9]   Large-Scale Computational Screening of Zeolites for Ethane/Ethene Separation [J].
Kim, Jihan ;
Lin, Li-Chiang ;
Martin, Richard L. ;
Swisher, Joseph A. ;
Haranczyk, Maciej ;
Smit, Berend .
LANGMUIR, 2012, 28 (32) :11923-11928
[10]  
Koenig SP, 2012, NAT NANOTECHNOL, V7, P728, DOI [10.1038/nnano.2012.162, 10.1038/NNANO.2012.162]