What is the machine learning?

被引:63
作者
Chang, Spencer [1 ]
Cohen, Timothy [1 ]
Ostdiek, Bryan [1 ]
机构
[1] Univ Oregon, Inst Theoret Sci, Eugene, OR 97403 USA
关键词
D O I
10.1103/PhysRevD.97.056009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables-aided by physical intuition-that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus nonlinear nature of the boundaries between signal and background. We demonstrate the efficacy of this approach using a toy example, followed by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking the information being utilized by these algorithms, this method puts in context what it means for a machine to learn.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Aad G, 2016, EUR PHYS J C, V76, DOI [10.1140/epjc/s10052-016-4344-x, 10.1140/epjc/s10052-016-3978-z, 10.1140/epjc/s10052-016-4338-8]
[2]   Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, O. S. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adye, T. ;
Aefsky, S. ;
Agatonovic-Jovin, T. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Ahlen, S. P. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Alconada Verzini, M. J. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alio, L. ;
Alison, J. ;
Allbrooke, B. M. M. ;
Allison, L. J. ;
Allport, P. P. .
PHYSICS LETTERS B, 2013, 726 (1-3) :88-119
[3]  
Abadi M., 2015, PREPRINT
[4]   A generic anti-QCD jet tagger [J].
Aguilar-Saavedra, J. A. ;
Collins, Jack ;
Mishra, Rashmish K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11)
[5]   FEYNRULES 2.0-A complete toolbox for tree-level phenomenology [J].
Alloul, Adam ;
Christensen, Neil D. ;
Degrande, Celine ;
Duhr, Claude ;
Fuks, Benjamin .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (08) :2250-2300
[6]   Playing tag with ANN: boosted top identification with pattern recognition [J].
Almeida, Leandro G. ;
Backovic, Mihailo ;
Cliche, Mathieu ;
Lee, Seung J. ;
Perelstein, Maxim .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[7]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[8]  
[Anonymous], ARXIV170300810
[9]  
[Anonymous], ARXIV14103831
[10]  
[Anonymous], 1990, Introduction to statistical pattern recognition