Zero-energy states of graphene triangular quantum dots in a magnetic field

被引:34
作者
Guclu, A. D. [1 ]
Potasz, P. [2 ]
Hawrylak, P. [3 ]
机构
[1] Izmir Inst Technol IZTECH, Dept Phys, TR-35430 Izmir, Turkey
[2] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland
[3] Natl Res Council Canada, Emerging Technol Div, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DIRAC FERMIONS; ZIGZAG; DIAMAGNETISM;
D O I
10.1103/PhysRevB.88.155429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken sublattice symmetry in an external magnetic field. The lateral size quantization opens an energy gap, and broken sublattice symmetry results in a shell of degenerate states at the Fermi level. We derive a semianalytical form for zero-energy states in a magnetic field and show that the shell remains degenerate in a magnetic field, in analogy to the zeroth Landau level of bulk graphene. The magnetic field closes the energy gap and leads to the crossing of valence and conduction states with the zero-energy states, modulating the degeneracy of the shell. The closing of the gap with increasing magnetic field is present in all graphene quantum dot structures investigated irrespective of shape and edge termination.
引用
收藏
页数:8
相关论文
共 68 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Interplay between valley polarization and electron-electron interaction in a graphene ring [J].
Abergel, D. S. L. ;
Apalkov, Vadim M. ;
Chakraborty, Tapash .
PHYSICAL REVIEW B, 2008, 78 (19)
[3]   Edge-dependent selection rules in magic triangular graphene flakes [J].
Akola, J. ;
Heiskanen, H. P. ;
Manninen, M. .
PHYSICAL REVIEW B, 2008, 77 (19)
[4]   Inner and outer edge states in graphene rings: A numerical investigation [J].
Bahamon, D. A. ;
Pereira, A. L. C. ;
Schulz, P. A. .
PHYSICAL REVIEW B, 2009, 79 (12)
[5]   Nanopatterning of graphene with crystallographic orientation control [J].
Biro, Laszlo P. ;
Lambin, Philippe .
CARBON, 2010, 48 (10) :2677-2689
[6]   Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene [J].
Campos, Leonardo C. ;
Manfrinato, Vitor R. ;
Sanchez-Yamagishi, Javier D. ;
Kong, Jing ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2009, 9 (07) :2600-2604
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Fock-Darwin states of dirac electrons in graphene-based artificial atoms [J].
Chen, Hong-Yi ;
Apalkov, Vadim ;
Chakraborty, Tapash .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[9]   Growth of triangle-shape graphene on Cu(111) surface [J].
Chen, Xiu ;
Liu, Shuyi ;
Liu, Lacheng ;
Liu, Xiaoqing ;
Liu, Xiaoming ;
Wang, Li .
APPLIED PHYSICS LETTERS, 2012, 100 (16)
[10]   Controlled Nanocutting of Graphene [J].
Ci, Lijie ;
Xu, Zhiping ;
Wang, Lili ;
Gao, Wei ;
Ding, Feng ;
Kelly, Kevin F. ;
Yakobson, Boris I. ;
Ajayan, Pulickel M. .
NANO RESEARCH, 2008, 1 (02) :116-122