Application of Artificial Intelligence in Pathology: Trends and Challenges

被引:52
作者
Kim, Inho [1 ]
Kang, Kyungmin [1 ]
Song, Youngjae [1 ]
Kim, Tae-Jung [2 ]
机构
[1] Catholic Univ Korea, Coll Med, 222 Banpo Daero, Seoul 06591, South Korea
[2] Catholic Univ Korea, Dept Hosp Pathol, Yeouido St Marys Hosp, Coll Med, 10,63 Ro, Seoul 07345, South Korea
基金
新加坡国家研究基金会;
关键词
artificial intelligence; computational pathology; digital pathology; histopathology image analysis; deep learning; TUMOR-INFILTRATING LYMPHOCYTES; DIGITAL PATHOLOGY; IMAGE-ANALYSIS; STROMA RATIO; PROGNOSTIC VALUE; BREAST; CANCER; SYSTEM; CLASSIFICATION; VALIDATION;
D O I
10.3390/diagnostics12112794
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Given the recent success of artificial intelligence (AI) in computer vision applications, many pathologists anticipate that AI will be able to assist them in a variety of digital pathology tasks. Simultaneously, tremendous advancements in deep learning have enabled a synergy with artificial intelligence (AI), allowing for image-based diagnosis on the background of digital pathology. There are efforts for developing AI-based tools to save pathologists time and eliminate errors. Here, we describe the elements in the development of computational pathology (CPATH), its applicability to AI development, and the challenges it faces, such as algorithm validation and interpretability, computing systems, reimbursement, ethics, and regulations. Furthermore, we present an overview of novel AI-based approaches that could be integrated into pathology laboratory workflows.
引用
收藏
页数:20
相关论文
共 135 条
[1]   Geospatial immune variability illuminates differential evolution of lung adenocarcinoma [J].
AbdulJabbar, Khalid ;
Raza, Shan E. Ahmed ;
Rosenthal, Rachel ;
Jamal-Hanjani, Mariam ;
Veeriah, Selvaraju ;
Akarca, Ayse ;
Lund, Tom ;
Moore, David A. ;
Salgado, Roberto ;
Al Bakir, Maise ;
Zapata, Luis ;
Hiley, Crispin T. ;
Officer, Leah ;
Sereno, Marco ;
Smith, Claire Rachel ;
Loi, Sherene ;
Hackshaw, Allan ;
Marafioti, Teresa ;
Quezada, Sergio A. ;
McGranahan, Nicholas ;
Le Quesne, John ;
Swanton, Charles ;
Yuan, Yinyin .
NATURE MEDICINE, 2020, 26 (07) :1054-+
[2]   Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association [J].
Abels, Esther ;
Pantanowitz, Liron ;
Aeffner, Famke ;
Zarella, Mark D. ;
van der Laak, Jeroen ;
Bui, Marilyn M. ;
Vemuri, Venkata N. P. ;
Parwani, Anil V. ;
Gibbs, Jeff ;
Agosto-Arroyo, Emmanuel ;
Beck, Andrew H. ;
Kozlowski, Cleopatra .
JOURNAL OF PATHOLOGY, 2019, 249 (03) :286-294
[3]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[4]  
Adnan M., 2020, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, P988
[5]   The Gold Standard Paradox in Digital Image Analysis Manual Versus Automated Scoring as Ground Truth [J].
Aeffner, Famke ;
Wilson, Kristin ;
Martin, Nathan T. ;
Black, Joshua C. ;
Hendriks, Cris L. Luengo ;
Bolon, Brad ;
Rudmann, Daniel G. ;
Gianani, Roberto ;
Koegler, Sally R. ;
Krueger, Joseph ;
Young, Dave .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2017, 141 (09) :1267-1275
[6]   Whole slide images for primary diagnostics of gastrointestinal tract pathology: a feasibility study [J].
Al-Janabi, Shaimaa ;
Huisman, Andre ;
Vink, Aryan ;
Leguit, Roos J. ;
Offerhaus, G. Johan A. ;
ten Kate, Fiebo J. W. ;
van Diest, Paul J. .
HUMAN PATHOLOGY, 2012, 43 (05) :702-707
[7]   Regulating Artificial Intelligence for a Successful Pathology Future [J].
Allen, Timothy Craig .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2019, 143 (10) :1175-1179
[8]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[9]   A multidisciplinary approach towards computational thinking for science majors [J].
Dept. of Computer Sciences, Purdue University, West Lafayette, IN 47907, United States .
SIGCSE Bull. Inroads, 2009, 1 (183-187) :183-187
[10]  
Aubreville M., 2022, ARXIV