Updated Equipotential Shapes of Jupiter and Saturn Using Juno and Cassini Grand Finale Gravity Science Measurements

被引:9
作者
Buccino, Dustin R. [1 ]
Helled, Ravit [2 ]
Parisi, Marzia [1 ]
Hubbard, William B. [3 ]
Folkner, William M. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Zurich, Inst Computat Sci, Zurich, Switzerland
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
关键词
ZONAL WIND-PROFILE; ROTATION PERIOD; GRAVITATIONAL-FIELD; ATMOSPHERE; SYSTEM; PIONEER;
D O I
10.1029/2019JE006354
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A commonly used shape model for the giant plants of Jupiter and Saturn is an oblate ellipsoid, a simplified model of the equipotential shape. The ellipsoidal shape models were originally derived from radio occultation data and gravity data after the Voyager flybys in 1979. Through precise Doppler tracking of NASA's Juno and Cassini spacecraft telecommunications links, zonal coefficients in a spherical harmonic expansion of the gravity field of Jupiter and Saturn have been resolved to degree 10, including the detection of nonzero odd zonal harmonics, which have been interpreted as differential rotation in the atmosphere for both planets. In this work, we construct the equipotential surfaces of Jupiter and Saturn using the recently measured gravity fields determined by Juno through perijove 8 and Cassini through end of mission. For both planets, even zonal harmonics dominate the equipotential shape, differing from the reference ellipsoid up to similar to 32 km at Jupiter and similar to 125 km at Saturn in the midlatitude regions. Saturn's internal rotation period estimated with ring seismology produces a shape that is fully consistent with the Pioneer and Voyager radio occultation measurements, and Jupiter's shape is fully consistent with the Pioneer and Voyager radio occultation measurements. With current equipotential theory, the recent analysis of the depth of the deep zonal flow on Jupiter and Saturn cannot fully be explained by the shape from current radio occultation measurements; additional occultation measurements and reanalysis of the Pioneer and Voyager radio occultations and will be useful for further constraining the shape of the planets.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] A look towards the future in the handling of space science mission geometry
    Acton, Charles
    Bachman, Nathaniel
    Semenov, Boris
    Wright, Edward
    [J]. PLANETARY AND SPACE SCIENCE, 2018, 150 : 9 - 12
  • [2] Saturn's gravitational field, internal rotation, and interior structure
    Anderson, John D.
    Schubert, Gerald
    [J]. SCIENCE, 2007, 317 (5843) : 1384 - 1387
  • [3] Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015
    Archinal, B. A.
    Acton, C. H.
    A'Hearn, M. F.
    Conrad, A.
    Consolmagno, G. J.
    Duxbury, T.
    Hestroffer, D.
    Hilton, J. L.
    Kirk, R. L.
    Klioner, S. A.
    McCarthy, D.
    Meech, K.
    Oberst, J.
    Ping, J.
    Seidelmann, P. K.
    Tholen, D. J.
    Thomas, P. C.
    Williams, I. P.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (03)
  • [4] Bachman N. J., 2017, 3 PLAN DAT WORKSH PL, V1986
  • [5] Buccino D., 2020, EQUIPOTENTIAL SHAPE, DOI DOI 10.25966/4S3C-RW61
  • [6] GRAVITY-FIELD OF THE SATURNIAN SYSTEM FROM PIONEER AND VOYAGER TRACKING DATA
    CAMPBELL, JK
    ANDERSON, JD
    [J]. ASTRONOMICAL JOURNAL, 1989, 97 (05) : 1485 - 1495
  • [7] GRAVITY-FIELD OF THE JOVIAN SYSTEM FROM PIONEER AND VOYAGER TRACKING DATA
    CAMPBELL, JK
    SYNNOTT, SP
    [J]. ASTRONOMICAL JOURNAL, 1985, 90 (02) : 364 - 372
  • [8] VOYAGER MEASUREMENT OF THE ROTATION PERIOD OF SATURNS MAGNETIC-FIELD
    DESCH, MD
    KAISER, ML
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1981, 8 (03) : 253 - 256
  • [9] Dessler A. J., 1983, Coordinate systems, P498, DOI DOI 10.1017/CBO9780511564574.016
  • [10] Analysis of Jupiter's Deep Jets Combining Juno Gravity and Time-varying Magnetic Field Measurements
    Duer, Keren
    Galanti, Eli
    Kaspi, Yohai
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 879 (02)