A Manganese-rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia burgdorferi

被引:66
作者
Aguirre, J. Dafhne [1 ]
Clark, Hillary M. [1 ]
McIlvin, Matthew [2 ]
Vazquez, Christine [1 ]
Palmere, Shaina L. [1 ]
Grab, Dennis J. [3 ]
Seshu, J. [4 ]
Hart, P. John [5 ,6 ]
Saito, Mak [2 ]
Culotta, Valeria C. [1 ]
机构
[1] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Biochem & Mol Biol, Baltimore, MD 21205 USA
[2] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[3] Johns Hopkins Univ, Sch Med, Div Med Microbiol, Dept Pathol, Baltimore, MD 21205 USA
[4] Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA
[5] South Texas Vet Hlth Care Syst, Dept Vet Affairs, Geriatr Res Educ & Clin Ctr, San Antonio, TX 78229 USA
[6] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78229 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SACCHAROMYCES-CEREVISIAE; LEUCINE AMINOPEPTIDASE; NEISSERIA-GONORRHOEAE; STAPHYLOCOCCUS-AUREUS; OXIDATIVE STRESS; BINDING PROTEIN; IRON; RESISTANCE; TRANSPORTER; SPECIFICITY;
D O I
10.1074/jbc.M112.433540
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.
引用
收藏
页码:8468 / 8478
页数:11
相关论文
共 57 条
[21]   Crystal Structure of the Leucine Aminopeptidase from Pseudomonas putida Reveals the Molecular Basis for its Enantioselectivity and Broad Substrate Specificity [J].
Kale, Avinash ;
Pijning, Tjaard ;
Sonke, Theo ;
Dijkstra, Bauke W. ;
Thunnissen, Andy-Mark W. H. .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 398 (05) :703-714
[22]   Structures of native and Fe-substituted SOD2 from Saccharomyces cerevisiae [J].
Kang, Yan ;
He, Yong-Xing ;
Zhao, Meng-Xi ;
Li, Wei-Fang .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 :1173-1178
[23]   CsrA Modulates Levels of Lipoproteins and Key Regulators of Gene Expression Critical for Pathogenic Mechanisms of Borrelia burgdorferi [J].
Karna, S. L. Rajasekhar ;
Sanjuan, Eva ;
Esteve-Gassent, Maria D. ;
Miller, Christine L. ;
Maruskova, Mahulena ;
Seshu, J. .
INFECTION AND IMMUNITY, 2011, 79 (02) :732-744
[24]   Nutrient Metal Sequestration by Calprotectin Inhibits Bacterial Superoxide Defense, Enhancing Neutrophil Killing of Staphylococcus aureus [J].
Kehl-Fie, Thomas E. ;
Chitayat, Seth ;
Hood, M. Indriati ;
Damo, Steven ;
Restrepo, Nicole ;
Garcia, Carlos ;
Munro, Kim A. ;
Chazin, Walter J. ;
Skaar, Eric P. .
CELL HOST & MICROBE, 2011, 10 (02) :158-164
[25]   Nutritional immunity beyond iron: a role for manganese and zinc [J].
Kehl-Fie, Thomas E. ;
Skaar, Eric P. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (02) :218-224
[26]   A Computational Framework for Proteome-Wide Pursuit and Prediction of Metalloproteins using ICP-MS and MS/MS Data [J].
Lancaster, W. Andrew ;
Praissman, Jeremy L. ;
Poole, Farris L., II ;
Cvetkovic, Aleksandar ;
Menon, Angeli Lal ;
Scott, Joseph W. ;
Jenney, Francis E., Jr. ;
Thorgersen, Michael P. ;
Kalisiak, Ewa ;
Apon, Junefredo V. ;
Trauger, Sunia A. ;
Siuzdak, Gary ;
Tainer, John A. ;
Adams, Michael W. W. .
BMC BIOINFORMATICS, 2011, 12
[27]   Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family [J].
Luk, E ;
Carroll, M ;
Baker, M ;
Culotta, VC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10353-10357
[28]   Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p [J].
Luk, EEC ;
Culotta, VC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (50) :47556-47562
[29]   Calorimetric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase [J].
Mizuno, K ;
Whittaker, MM ;
Bächinger, HP ;
Whittaker, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :27339-27344
[30]   The Interaction of Mitochondrial Iron with Manganese Superoxide Dismutase [J].
Naranuntarat, Amornrat ;
Jensen, Laran T. ;
Pazicni, Samuel ;
Penner-Hahn, James E. ;
Culotta, Valeria C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (34) :22633-22640