Field-scale soil moisture estimation using sentinel-1 GRD SAR data

被引:23
作者
Bhogapurapu, Narayanarao [1 ]
Dey, Subhadip [1 ]
Homayouni, Saeid [2 ]
Bhattacharya, Avik [1 ]
Rao, Y. S. [1 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Microwave Remote Sensing Lab, Mumbai 400076, India
[2] Inst Natl Rech Sci, Ctr Eau Terre Environm, 490 Rue Couronne St, Quebec City, PQ G1K 9A9, Canada
关键词
Soil moisture; DpRVI c; NDVI; Change detection; Sentinel-1; LEAF-AREA INDEX; C-BAND; VEGETATION INDEXES; SURFACE-ROUGHNESS; RETRIEVAL; RADAR; ASSIMILATION; BACKSCATTERING; DESCRIPTORS; REFLECTANCE;
D O I
10.1016/j.asr.2022.03.019
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Soil moisture is a critical land variable that controls the energy and mass balance in land-atmosphere interactions. Spaceborne Syn-thetic Aperture Radar (SAR) sensors offer an efficient way to map and monitor soil moisture because of their sensitivity towards the dielectric and geometric properties of the target. In addition, SAR acquisitions are weather-independent, providing a significant advan-tage over optical imaging during periods of cloud cover. However, vegetation cover makes these processes more complex and influences the interaction of SAR backscatter resulting from combined soil matrix and vegetation cover. Therefore, using SAR data, it is necessary to compensate for vegetation contribution in total backscatter while estimating soil moisture over the vegetated soil surface. This study presents a technique that utilizes a vegetation index derived from SAR data to generate high-resolution soil moisture maps. It is note-worthy that this proposed soil moisture retrieval method uses only the dual-polarimetric Ground Range Detected (GRD) SAR product, i.e., only backscatter intensities. Hence, the proposed method has a high potential for operational soil moisture monitoring globally. We validated over 34 soil moisture stations of the Texas Soil Observation Network (TxSON) using time-series Sentinel-1 SAR data. The Root Mean Square Error (RMSE) values for estimated volumetric soil moisture are within the range of 0.048 m3 m-3 to 0.055 m3 m-3 with the Pearson correlation coefficient r > 0:79. The code to generate DpRVIc in Google Earth Engine is available at: https://github.com/Narayana-Rao/dual_pol_descriptors.
引用
收藏
页码:3845 / 3858
页数:14
相关论文
共 68 条
[1]   Global synthesis of leaf area index observations: implications for ecological and remote sensing studies [J].
Asner, GP ;
Scurlock, JMO ;
Hicke, JA .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2003, 12 (03) :191-205
[2]   ESTIMATING ABSORBED PHOTOSYNTHETIC RADIATION AND LEAF-AREA INDEX FROM SPECTRAL REFLECTANCE IN WHEAT [J].
ASRAR, G ;
FUCHS, M ;
KANEMASU, ET ;
HATFIELD, JL .
AGRONOMY JOURNAL, 1984, 76 (02) :300-306
[3]   Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale [J].
Attarzadeh, Reza ;
Amini, Jalal ;
Notarnicola, Claudia ;
Greifeneder, Felix .
REMOTE SENSING, 2018, 10 (08)
[4]   Soil moisture estimation using multi-incidence and multi-polarization ASAR data [J].
Baghdadi, N. ;
Holah, N. ;
Zribi, M. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (9-10) :1907-1920
[5]   Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands [J].
Baghdadi, Nicolas N. ;
El Hajj, Mohamad ;
Zribi, Mehrez ;
Fayad, Ibrahim .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (03) :1229-1243
[6]   Sentinel-1 soil moisture at 1 km resolution: a validation study [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Lovergine, Francesco P. ;
Palmisano, Davide ;
Peng, Jian ;
Marzahn, Philip ;
Wegmuller, Urs ;
Cartus, Oliver ;
Dabrowska-Zielinska, Katarzyna ;
Musial, Jan P. ;
Davidson, Malcolm W. J. ;
Pauwels, Valentijn R. N. ;
Cosh, Michael H. ;
McNairn, Heather ;
Johnson, Joel T. ;
Walker, Jeffrey P. ;
Yueh, Simon H. ;
Entekhabi, Dara ;
Kerr, Yann H. ;
Jackson, Thomas J. .
REMOTE SENSING OF ENVIRONMENT, 2021, 263
[7]   Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Davidson, Malcolm W. J. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (02) :439-450
[8]   Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model [J].
Bao, Yansong ;
Lin, Libin ;
Wu, Shanyu ;
Deng, Khidir Abdalla Kwal ;
Petropoulos, George P. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 72 :76-85
[9]   Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles [J].
Bauer-Marschallingere, Bernhard ;
Freeman, Vahid ;
Cao, Senmao ;
Paulik, Christoph ;
Schaufler, Stefan ;
Stachl, Tobias ;
Modanesi, Sara ;
Massario, Christian ;
Ciabatta, Luca ;
Brocca, Luca ;
Wagner, Wolfgang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01) :520-539
[10]  
Bhogapurapu N., 2021, J OPEN SOURCE SOFTW, V6, P2970