Adjoint-Based Control of Fluid-Structure Interaction for Computational Steering Applications

被引:22
作者
Bazilevs, Y. [1 ]
Hsu, M. -C. [2 ]
Bement, M. T. [3 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE | 2013年 / 18卷
关键词
Fluid-structure interaction; adjoint FSI formulation; adjoint-based control; isogeometric analysis; computational steering; DDDAS;
D O I
10.1016/j.procs.2013.05.368
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The primal and adjoint, time-dependent fluid-structure interaction (FSI) formulations are presented. A simple control strategy for FSI problems is formulated based on the information provided by the solution of the adjoint FSI problem. A well-known benchmark FSI problem is computed to demonstrate the effectiveness of the proposed technique. Such control strategies as proposed in this paper are useful for computational steering or so-called Dynamics Data Driven Application System (DDDAS) simulations, in which the computational model is adjusted to include the information coming from the measurement data, and control strategies may be employed to computationally steer the physical system toward desired behavior.
引用
收藏
页码:1989 / 1998
页数:10
相关论文
共 16 条
[1]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[2]   Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data [J].
Bazilevs, Y. ;
Marsden, A. L. ;
di Scalea, F. Lanza ;
Majumdar, A. ;
Tatineni, M. .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 :1149-1158
[3]  
Bazilevs Y., 2013, Computational Fluid-Structure Interaction: Methods and Applications, DOI [10.1002/9781118483565, DOI 10.1002/9781118483565]
[4]   ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID-STRUCTURE INTERACTION [J].
Bazilevs, Yuri ;
Hsu, Ming-Chen ;
Takizawa, Kenji ;
Tezduyar, Tayfun E. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[5]  
Belytschko T., 2014, Nonlinear Finite Elements for Continua and Structures, VSecond
[6]   Excitation design for damage detection using iterative adjoint-based optimization-Part 1: Method development [J].
Bement, M. T. ;
Bewley, T. R. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (03) :783-793
[7]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[8]  
Cottrell J.A., 2009, ISOGEOMETRIC ANAL IN, DOI [10.1002/9780470749081, DOI 10.1002/9780470749081]
[9]  
Darema F, 2004, LECT NOTES COMPUT SC, V3038, P662
[10]   LAGRANGIAN-EULERIAN FINITE-ELEMENT FORMULATION FOR INCOMPRESSIBLE VISCOUS FLOWS [J].
HUGHES, TJR ;
LIU, WK ;
ZIMMERMANN, TK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 29 (03) :329-349