Validation of POLDER/ADEOS data using a ground-based lidar network: Preliminary results for cirrus clouds

被引:8
|
作者
Chepfer, H [1 ]
Goloub, P
Sauvage, L
Flamant, PH
Brogniez, G
Spinhirne, J
Lavorato, M
Sugimoto, N
Pelon, J
机构
[1] Ecole Polytech, Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-91128 Palaiseau, France
[2] Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] CONICET, CEILAP, CITELA, Villa Martelli, Argentina
[5] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
关键词
D O I
10.1016/S1464-1909(98)00038-0
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
POLDER-1 on board the Japanese ADEOS platform has collected 8 months of data (October 1996 to June 1997). POLDER is a visible radiometer with multi-directional and polarization capabilities. These features allow to obtain information both on cloud thermodynamical phase and cloud altitude. The POLDER cloud algorithms are currently under validation. For cirrus clouds, a validation based on a comparison between cloud properties inferred from POLDER-1 data and cloud properties retrieved from a ground-based lidar network is currently under consideration. In this paper, preliminary comparisons between cloud altitude inferred from POLDER-1 and lidars are presented. These comparisons show an underestimation of cloud altitude by POLDER-1 for optically thin clouds. A first theoretical analysis based on radiative transfer simulations allows to explain the difference between POLDER and lidar altitudes. Moreover. a preliminary comparison between thermodynamical cloud phase (liquid water / ice) obtained with POLDER-1 and cloud temperature inferred from radiosoundings and cloud altitudes shows that cirrus clouds at temperatures lower than -40 degrees C are correctly identified as ice layers by POLDER-1 (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
  • [1] Cirrus cloud properties derived from POLDER-1/ADEOS polarized radiances: First validation using a ground-based lidar network
    Chepfer, H
    Goloub, P
    Spinhirne, J
    Flamant, PH
    Lavorato, M
    Sauvage, L
    Brogniez, G
    Pelon, J
    JOURNAL OF APPLIED METEOROLOGY, 2000, 39 (02): : 154 - 168
  • [2] On the use cirrus clouds for ground-based elastic lidar calibration
    Navas-Guzman, F.
    Guerrero-Rascado, J. L.
    Bravo-Aranda, J. A.
    Alados-Arboledas, L.
    OPTICA PURA Y APLICADA, 2011, 44 (01): : 49 - 53
  • [3] Constraining Ice Water Content of Thin Antarctic Cirrus Clouds Using Ground-Based Lidar and Satellite Data
    Alexander, S. P.
    Klekociuk, A. R.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2021, 78 (06) : 1791 - 1806
  • [4] GROUND-BASED CIRRUS CLOUDS IN THE ARCTIC
    HOFF, RM
    LEAITCH, WR
    SYMPOSIUM ON THE ROLE OF CLOUDS IN ATMOSPHERIC CHEMISTRY AND GLOBAL CLIMATE, 1988, : 324 - 327
  • [5] Cirrus observations using ground-based LIDAR and terra MODIS instrument
    Kulkarni, Padmavati
    Kumar, Y. Bhavani
    Prasantha, P. Vishnu
    Rao, D. Narayana
    Krishniah, M.
    REMOTE SENSING OF THE ATMOSPHERE AND CLOUDS, 2006, 6408
  • [6] INVESTIGATION OF CIRRUS CLOUDS USING THE CALIPSO LIDAR DATA
    Paul, Sydney D.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4142 - 4145
  • [7] Aerosols and Cirrus Clouds over Hanoi, Vietnam: Comparison between satellite products and results derived from ground-based LIDAR measurements
    Dothe, H.
    Dinh Van Trung
    Bui Van Hai
    Gruninger, J. H.
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XIV, 2014, 9262
  • [8] Remote sensing of clouds and aerosols using lidar ground-based observations
    Morille, Y
    Pietras, C
    Romand, B
    Lapouge, F
    Boitel, C
    Grall, M
    Goukenleuque, C
    Haeffelin, M
    22ND INTERNATIONAL LASER RADAR CONFERENCE (ILRC 2004), VOLS 1 AND 2, 2004, 561 : 419 - 421
  • [9] Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements
    Gouveia, Diego A.
    Barja, Boris
    Barbosa, Henrique M. J.
    Seifert, Patric
    Baars, Holger
    Pauliquevis, Theotonio
    Artaxo, Paulo
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (05) : 3619 - 3636
  • [10] Modeling of polarized light scattering in cirrus clouds. Validation with in-situ measurements and ADEOS-POLDER reflectance observations.
    Labonnote, LC
    Brogniez, G
    Gayet, JF
    Buriez, JC
    Doutriaux-Boucher, M
    POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING II, 1999, 3754 : 320 - 328