Hf Doping Effect on Hard Magnetism of Nanocrystalline Zr18-xHfxCo82 Ribbons

被引:13
作者
Al-Omari, I. A. [1 ,2 ,3 ]
Zhang, W. Y. [2 ,3 ]
Yue, Lanping [3 ]
Skomski, R. [2 ,3 ]
Shield, J. E. [3 ,4 ]
Li, X. Z. [3 ]
Sellmyer, D. J. [2 ,3 ]
机构
[1] Sultan Qaboos Univ, Dept Phys, Muscat 123, Oman
[2] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[3] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[4] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
关键词
Energy; magnetization; microstructure; nanomaterials; permanent magnets; ALLOYS; PHASE;
D O I
10.1109/TMAG.2013.2245498
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effects of substituting Zr by Hf on the structural and the magnetic properties of the nanocrystalline rapidly solidified Zr18-xHfxCo82 ribbons (x = 0, 2, 4, and 6) have been studied. X-ray diffraction and thermomagnetic measurement results indicated that upon rapid solidification processing four magnetic phases occur: rhombohedral Zr2Co11, orthorhombic Zr2Co11, hcp Co, and cubic Zr6Co23 phases. Microstructure analysis results showed the reduction in the percentage of the soft-magnetic phase (Co) compared to the hard-magnetic phase (Zr2Co11 (rhombohedral)) with the increase in the Hf concentration. All the samples under investigation have ferromagnetic nature, at 4.2 K and at room temperature. The coercive force (H-c) and the saturation magnetization (M-s) are found to linearly increases with x (x <= 2), then H-c slightly increases and M-s slightly decreases with increasing x. The maximum energy product (BH)(max) at room temperature is found to increases with increasing x reaching a maximum value for x = 4. The magnetocrystalline anisotropy parameter of these samples are calculated to be K = 1.1 MJ/m(3) and independent of Hf concentration. The above results indicate that the replacement of Zr by Hf improves the hard-magnetic properties of this class of rear-earth-free nanocrystalline permanent magnet materials.
引用
收藏
页码:3394 / 3397
页数:4
相关论文
共 15 条
[1]   Assembly of uniaxially aligned rare-earth-free nanomagnets [J].
Balamurugan, B. ;
Das, B. ;
Shah, V. R. ;
Skomski, R. ;
Li, X. Z. ;
Sellmyer, D. J. .
APPLIED PHYSICS LETTERS, 2012, 101 (12)
[2]  
Balamurugan B., 2012, J APPL PHYS, V111
[3]   MAGNETIC-PROPERTIES OF ZRCO5.1-XFEX ALLOYS [J].
BURZO, E ;
GROSSINGER, R ;
HUNDEGGER, P ;
KIRCHMAYR, HR ;
KREWENKA, R ;
MAYERHOFER, O ;
LEMAIRE, R .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (10) :6550-6552
[4]   Magnetic properties, phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites -: art. no. 10F307 [J].
Chen, LY ;
Chang, HW ;
Chiu, CH ;
Chang, CW ;
Chang, WC .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[5]   HIGH COERCIVITY IN NON-RARE-EARTH CONTAINING ALLOYS [J].
GAO, C ;
WAN, H ;
HADJIPANAYIS, GC .
JOURNAL OF APPLIED PHYSICS, 1990, 67 (09) :4960-4962
[6]   RARE-EARTH RICH METALLIC GLASSES .1. MAGNETIC HYSTERESIS [J].
HADJIPANAYIS, G ;
SELLMYER, DJ ;
BRANDT, B .
PHYSICAL REVIEW B, 1981, 23 (07) :3349-3354
[7]   HARD MAGNETIC PHASE IN RAPIDLY QUENCHED ZR-CO-B ALLOYS [J].
ISHIKAWA, T ;
OHMORI, K .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) :1370-1372
[8]   Superconducting property of Zr-Co and Zr-Co-Al alloys fabricated by rapid solidification [J].
Okai, D. ;
Nagai, R. ;
Motoyama, G. ;
Fukami, T. ;
Yamasaki, T. ;
Yokoyama, Y. ;
Kimura, N. M. ;
Inoue, A. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (20) :1048-1051
[9]   MAGNETOCRYSTALLINE ANISOTROPY OF THE 3D SUBLATTICE IN THE CUBIC INTERMETALLIC SYSTEM ZR6CO23-XMX (M=FE,NI) [J].
PARETI, L ;
SOLZI, M ;
PAOLUZI, A .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (06) :2941-2947
[10]   High performance Co-Zr-B melt-spun ribbons [J].
Saito, T .
APPLIED PHYSICS LETTERS, 2003, 82 (14) :2305-2307