ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL

被引:0
作者
Lewin, Mathieu [1 ,2 ]
Rougerie, Nicolas [3 ,4 ]
机构
[1] Univ Grenoble 1, F-38042 Grenoble, France
[2] CNRS, LPMMC, UMR 5493, F-38042 Grenoble, France
[3] CNRS, F-95000 Cergy Pontoise, France
[4] Univ Cergy Pontoise, Dept Math, UMR 8088, F-95000 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Polaron; quantum crystal; binding inequalities; HVZ theorem; Choquard-Pekar equation; CONCENTRATION-COMPACTNESS PRINCIPLE; CALCULUS; LIMIT;
D O I
10.1051/cocv/2012025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a multi-polaron model obtained by coupling the many-body Schrodinger equation for N interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background. We prove first that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1. Then we discuss the case of multi-polarons containing N >= 2 electrons. We show that their existence is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.
引用
收藏
页码:629 / 656
页数:28
相关论文
共 27 条
[1]  
Alexandrov A., 2009, SPRINGER SERIES SOLI
[2]  
[Anonymous], 1972, METHODS MODERN MATH, DOI DOI 10.1016/B978-0-12-585001-8.50008-8
[3]  
[Anonymous], ZH EKSP TEOR FYS
[4]   A new approach to the modeling of local defects in crystals: The reduced Hartree-Fock case [J].
Cances, Eric ;
Deleurence, Amelie ;
Lewin, Mathieu .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (01) :129-177
[5]   The Dielectric Permittivity of Crystals in the Reduced Hartree-Fock Approximation [J].
Cances, Eric ;
Lewin, Mathieu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) :139-177
[6]   Non-perturbative embedding of local defects in crystalline materials [J].
Cances, Eric ;
Deleurence, Amelie ;
Lewin, Mathieu .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (29)
[7]   On the thermodynamic limit for Hartree-Fock type models [J].
Catto, I ;
Le Bris, C ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (06) :687-760
[8]   Stability and absence of binding for multi-polaron systems [J].
Frank, Rupert L. ;
Lieb, Elliott H. ;
Seiringer, Robert ;
Thomas, Lawrence E. .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2011, (113) :39-67
[9]   Bipolaron and N-Polaron Binding Energies [J].
Frank, Rupert L. ;
Lieb, Elliott H. ;
Seiringer, Robert ;
Thomas, Lawrence E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (21)
[10]   INTERACTION OF ELECTRONS WITH LATTICE VIBRATIONS [J].
FROHLICH, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 215 (1122) :291-298