Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle

被引:404
作者
Fang, Zheyu [1 ,6 ]
Zhen, Yu-Rong [2 ,3 ]
Neumann, Oara [1 ,2 ,3 ]
Polman, Albert [4 ]
Javier Garcia de Abajo, F. [5 ]
Nordlander, Peter [1 ,2 ,3 ]
Halas, Naomi J. [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[3] Rice Univ, Lab Nanophoton, Houston, TX 77005 USA
[4] FOM Inst AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[5] IQFR CSIC, Madrid 28006, Spain
[6] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
基金
欧洲研究理事会;
关键词
Plasmonic heating; Au nanoparticle; LSPR; nanobubble; microbubble; SCATTERING; HEAT;
D O I
10.1021/nl4003238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor-a "nanobubble"-surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micrometer-sized bubbles resulting from the coalescence of nanoparticle-"bound" vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications.
引用
收藏
页码:1736 / 1742
页数:7
相关论文
共 32 条
[1]   Heterogenous Catalysis Mediated by Plasmon Heating [J].
Adleman, James R. ;
Boyd, David A. ;
Goodwin, David G. ;
Psaltis, Demetri .
NANO LETTERS, 2009, 9 (12) :4417-4423
[2]   Quantitative Measurements of Individual Gold Nanoparticle Scattering Cross Sections [J].
Anderson, Lindsey J. E. ;
Mayer, Kathryn M. ;
Fraleigh, Robert D. ;
Yang, Yi ;
Lee, Seunghyun ;
Hafner, Jason H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (25) :11127-11132
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[5]   Chemical separations by bubble-assisted interphase mass-transfer [J].
Boyd, David A. ;
Adleman, James R. ;
Goodwin, David G. ;
Psaltis, Demetirl .
ANALYTICAL CHEMISTRY, 2008, 80 (07) :2452-2456
[6]   Plasmon-assisted chemical vapor deposition [J].
Boyd, David A. ;
Greengard, Leslie ;
Brongersma, Mark ;
El-Naggar, Mohamed Y. ;
Goodwin, David G. .
NANO LETTERS, 2006, 6 (11) :2592-2597
[7]   Superheating Water by CW Excitation of Gold Nanodots [J].
Carlson, Michael T. ;
Green, Andrew J. ;
Richardson, Hugh H. .
NANO LETTERS, 2012, 12 (03) :1534-1537
[8]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[9]   Multiple scattering of radiation in clusters of dielectrics [J].
de Abajo, FJG .
PHYSICAL REVIEW B, 1999, 60 (08) :6086-6102
[10]  
Erickson D, 2011, NAT PHOTONICS, V5, P583, DOI [10.1038/NPHOTON.2011.209, 10.1038/nphoton.2011.209]