Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

被引:3
|
作者
Bleszynski, E. [1 ]
Bleszynski, M. [1 ]
Jaroszewicz, T. [1 ]
机构
[1] Monopole Res, Thousand Oaks, CA 91360 USA
关键词
PHASE-GRADIENT AUTOFOCUS; REGISTRATION; INVERSION; MIGRATION; ERRORS;
D O I
10.1088/0266-5611/29/5/054004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Autofocus algorithm for curvilinear SAR imaging
    Bleszynski, E.
    Bleszynski, M.
    Jaroszewicz, T.
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XIX, 2012, 8394
  • [2] Transionospheric Autofocus for Synthetic Aperture Radar
    Gilman, Mikhail
    Tsynkov, Semyon V.
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (04) : 2144 - 2174
  • [3] An Autofocus Algorithm for Estimating Residual Trajectory Deviations in Synthetic Aperture Radar
    Ran, Lei
    Liu, Zheng
    Zhang, Lei
    Li, Tao
    Xie, Rong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (06): : 3408 - 3425
  • [4] Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing
    Torgrimsson, Jan
    Dammert, Patrik
    Hellsten, Hans
    Ulander, Lars M. H.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (10): : 6674 - 6687
  • [5] Improved phase curvature autofocus for stripmap synthetic aperture radar imaging
    Saeedi, Jamal
    IET SIGNAL PROCESSING, 2020, 14 (10) : 812 - 822
  • [6] Two-stage autofocus algorithm with filled function for synthetic aperture radar
    Liu, Yan
    Liu, Qiongxiao
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02)
  • [7] Experiments with autofocus for strip map synthetic aperture radar data
    Berger, Tor
    Hamran, Svein-Erik
    2012 IEEE RADAR CONFERENCE (RADAR), 2012,
  • [8] A Hybrid Synthetic Aperture Radar Autofocus Approach Based on FRFT and PGA
    Xia, Bai
    Wang Dalong
    Juan, Zhao
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 1940 - 1943
  • [9] Doppler Synthetic Aperture Radar Imaging
    Wang, Ling
    Yazici, Birsen
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [10] An Algorithm to Retrieve Precipitation with Synthetic Aperture Radar
    Xie Ya'nan
    Liu Zhikun
    An Dawei
    JOURNAL OF METEOROLOGICAL RESEARCH, 2016, 30 (03) : 401 - 411