Zero-Shot Image Classification Based on Attribute

被引:0
|
作者
Zhang, Wei [1 ]
Chen, Wenbai [1 ]
Chen, Xiangfeng [1 ]
Han, Hu [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Coll Automat, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
来源
2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC) | 2017年
关键词
Attribute prediction; Zero-shot learning; ResNet-50; Image classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the image classification task, traditional model can only recognize annotated image samples, but class labels can't involve all the object categories. In order to reduce the dependence on the labels and recognize unannotated object samples, this paper proposes zero-shot image classification based on attribute. The binary attribute is used as the intermediate knowledge to migrate learned knowledge from training samples domain to test samples domain. Using the classification model of the multi-loss function based on ResNet-50 to predict the object attributes. Then, using an attribute matrix to represent the correspondence between the object class and the attribute. Finally, the result of attribute prediction is combined with the prior knowledge of the attribute matrix to get the category. Compared with the traditional image classification method, the attribute learning model is applied to the zero-shot image classification. The experimental data show that the method improves the recognition accuracy of the image and improves the flexibility of the image classification task, which lays the foundation for the multi-source domain adaptation induction problem.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [21] Joint attribute chain prediction for zero-shot learning
    Qiao, Lingfeng
    Tuo, Hongya
    Wang, Jiexin
    Wang, Chao
    Jing, Zhongliang
    IET COMPUTER VISION, 2018, 12 (06) : 873 - 881
  • [22] A semi-supervised zero-shot image classification method based on soft-target
    Ji, Zhong
    Wang, Qiang
    Cui, Biying
    Pang, Yanwei
    Cao, Xianbin
    Li, Xuelong
    NEURAL NETWORKS, 2021, 143 : 88 - 96
  • [23] Zero-Shot Learning Based on Multitask Extended Attribute Groups
    Wang, Xuesong
    Li, Qianyu
    Gong, Ping
    Cheng, Yuhu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (03): : 2003 - 2011
  • [24] A Zero-Shot Image Classification Method of Ship Coating Defects Based on IDATLWGAN
    Bu, Henan
    Yang, Teng
    Hu, Changzhou
    Zhu, Xianpeng
    Ge, Zikang
    Yan, Zhuwen
    Tang, Yingxin
    COATINGS, 2024, 14 (04)
  • [25] Review of Zero-Shot Remote Sensing Image Scene Classification
    Tan, Xiaomeng
    Xi, Bobo
    Li, Jiaojiao
    Zheng, Tie
    Li, Yunsong
    Xue, Changbin
    Chanussot, Jocelyn
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11274 - 11289
  • [26] Zero-shot image classification using coupled dictionary embedding
    Rostami, Mohammad
    Kolouri, Soheil
    Murez, Zak
    Owechko, Yuri
    Eaton, Eric
    Kim, Kuyngnam
    MACHINE LEARNING WITH APPLICATIONS, 2022, 8
  • [27] An Attribute Learning Method for Zero-Shot Recognition
    Yazdanian, Ramtin
    Shojaee, Seyed Mohsen
    Baghshah, Mahdieh Soleymani
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 2235 - 2240
  • [28] Class knowledge overlay to visual feature learning for zero-shot image classification
    Xie, Cheng
    Zeng, Ting
    Xiang, Hongxin
    Li, Keqin
    Yang, Yun
    Liu, Qing
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 207
  • [29] A Cross-Modal Alignment for Zero-Shot Image Classification
    Wu, Lu
    Wu, Chenyu
    Guo, Han
    Zhao, Zhihao
    IEEE ACCESS, 2023, 11 : 9067 - 9073
  • [30] Analyzing the Potential of Zero-Shot Recognition for Document Image Classification
    Siddiqui, Shoaib Ahmed
    Dengel, Andreas
    Ahmed, Sheraz
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT IV, 2021, 12824 : 293 - 304