Zero-Shot Image Classification Based on Attribute

被引:0
|
作者
Zhang, Wei [1 ]
Chen, Wenbai [1 ]
Chen, Xiangfeng [1 ]
Han, Hu [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Coll Automat, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
关键词
Attribute prediction; Zero-shot learning; ResNet-50; Image classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the image classification task, traditional model can only recognize annotated image samples, but class labels can't involve all the object categories. In order to reduce the dependence on the labels and recognize unannotated object samples, this paper proposes zero-shot image classification based on attribute. The binary attribute is used as the intermediate knowledge to migrate learned knowledge from training samples domain to test samples domain. Using the classification model of the multi-loss function based on ResNet-50 to predict the object attributes. Then, using an attribute matrix to represent the correspondence between the object class and the attribute. Finally, the result of attribute prediction is combined with the prior knowledge of the attribute matrix to get the category. Compared with the traditional image classification method, the attribute learning model is applied to the zero-shot image classification. The experimental data show that the method improves the recognition accuracy of the image and improves the flexibility of the image classification task, which lays the foundation for the multi-source domain adaptation induction problem.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [21] Zero-shot classification based on attribute correlation graph regularized feature selection
    School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou
    Jiangsu
    221116, China
    不详
    Jiangsu
    221004, China
    Zhongguo Kuangye Daxue Xuebao, 6 (1097-1104):
  • [22] BAP: Bimodal Attribute Prediction for Zero-Shot Image Categorization
    Li, Hanhui
    Li, Donghui
    Luo, Xiaonan
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 1013 - 1016
  • [23] Embedded Zero-Shot Image Classification Based on Bidirectional Feature Mapping
    Sun, Huadong
    Zhen, Zhibin
    Liu, Yinghui
    Zhang, Xu
    Han, Xiaowei
    Zhang, Pengyi
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [24] Zero-shot Domain Adaptation Based on Attribute Information
    Ishii, Masato
    Takenouchi, Takashi
    Sugiyama, Masashi
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 473 - 488
  • [25] Employing Hierarchical Clustering and Reinforcement Learning for Attribute-Based Zero-Shot Classification
    Liu, Bin
    Yao, Li
    Wu, Junfeng
    Feng, Xiaosheng
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 360 - 372
  • [26] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144
  • [27] Zero-Shot Learning with Attribute Selection
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Tang, Sheng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6870 - 6877
  • [28] Enhanced VAEGAN: a zero-shot image classification method
    Ding, Bo
    Fan, Yufei
    He, Yongjun
    Zhao, Jing
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9235 - 9246
  • [29] Attribute Distillation for Zero-Shot Recognition
    Li, Houjun
    Wei, Boquan
    Computer Engineering and Applications, 60 (09): : 219 - 227
  • [30] Zero-shot Learning With Fuzzy Attribute
    Liu, Chongwen
    Shang, Zhaowei
    Tang, Yuan Yan
    2017 3RD IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2017, : 277 - 282