Photonic Readout of Superconducting Nanowire Single Photon Counting Detectors

被引:24
作者
de Cea, Marc [1 ]
Wollman, Emma E. [2 ]
Atabaki, Amir H. [1 ]
Gray, Dodd J. [1 ]
Shaw, Matthew D. [2 ]
Ram, Rajeev J. [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
HIGH-EFFICIENCY;
D O I
10.1038/s41598-020-65971-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scalable, low power, high speed data transfer between cryogenic (0.1-4K) and room temperature environments is essential for the realization of practical, large-scale systems based on superconducting technologies. A promising approach to overcome the limitations of conventional wire-based readout is the use of optical fiber communication. Optical fiber presents a 100-1,000x lower heat load than conventional electrical wiring, relaxing the requirements for thermal anchoring, and is also immune to electromagnetic interference, which allows routing of sensitive signals with improved robustness to noise and crosstalk. Most importantly, optical fibers allow for very high bandwidth densities (in the Tbps/mm(2) range) by carrying multiple signals through the same physical fiber (Wavelength Division Multiplexing, WDM). Here, we demonstrate for the first time optical readout of a superconducting nanowire single-photon detector (SNSPD) directly coupled to a CMOS photonic modulator, without the need for an interfacing device. By operating the modulator in the forward bias regime at a temperature of 3.6K, we achieve very high modulation efficiency (1,000-10,000pm/V) and a low input impedance of 500 Omega with a low power dissipation of 40 mu W. This allows us to obtain optical modulation with the low, millivolt-level signal generated by the SNSPD.
引用
收藏
页数:8
相关论文
共 35 条
[1]   High-speed modulator with interleaved junctions in zero-change CMOS photonics [J].
Alloatti, L. ;
Cheian, D. ;
Ram, R. J. .
APPLIED PHYSICS LETTERS, 2016, 108 (13)
[2]  
[Anonymous], 2012, Semiconductor Devices: Physics and Technology
[3]  
[Anonymous], 2017, 2017 EUROPEAN C OPTI, DOI [10.1109/ECOC.2017.8345908, DOI 10.1109/ECOC.2017.8345908]
[4]  
Bardin JC, 2013, IEEE BIPOL BICMOS, P215, DOI 10.1109/BCTM.2013.6798179
[5]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[6]   Overview and Results of the Lunar Laser Communication Demonstration [J].
Boroson, Don M. ;
Robinson, Bryan S. ;
Murphy, Daniel V. ;
Burianek, Dennis A. ;
Khatri, Farzana ;
Kovalik, Joseph M. ;
Sodnik, Zoran ;
Cornwell, Donald M. .
FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVI, 2014, 8971
[7]   An optically coupled superconducting analog to digital converter [J].
Bunz, LA ;
Robertazzi, R ;
Rylov, S .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :2972-2974
[8]   Scalable cryogenic readout circuit for a superconducting nanowire single-photon detector system [J].
Cahall, Clinton ;
Gauthier, Daniel J. ;
Kim, Jungsang .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (06)
[9]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[10]  
Eltes F, 2018, INT EL DEVICES MEET