Role of carbonic anhydrases in ferroptosis-resistance

被引:16
|
作者
Li, Zan [1 ]
Jiang, Li [1 ]
Toyokuni, Shinya [1 ,2 ,3 ]
机构
[1] Nagoya Univ, Dept Pathol & Biol Responses, Grad Sch Med, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[2] Nagoya Univ, Ctr Low Temp Plasma Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
[3] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia
关键词
Carbonic anhydrase; Iron; Ferroptosis; Mesothelioma; DEPENDENT IRON UPTAKE; CANCER-CELL-DEATH; LIPID-PEROXIDATION; OXIDATIVE STRESS; TUMOR HYPOXIA; FREE-RADICALS; IN-VIVO; PH; IX; TRANSFERRIN;
D O I
10.1016/j.abb.2020.108440
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: Toward the era of mesothelioma prevention
    Toyokuni, Shinya
    FREE RADICAL BIOLOGY AND MEDICINE, 2019, 133 : 206 - 215
  • [2] Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia
    Li, Zan
    Jiang, Li
    Chew, Shan Hwu
    Hirayama, Tasuku
    Sekido, Yoshitaka
    Toyokuni, Shinya
    REDOX BIOLOGY, 2019, 26
  • [3] The γ class of carbonic anhydrases
    Ferry, James G.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (02): : 374 - 381
  • [4] Carbonic Anhydrases and Metabolism
    Supuran, Claudiu T.
    METABOLITES, 2018, 8 (02):
  • [5] Duodenal epithelial sensing of luminal acid: role of carbonic anhydrases
    Sjoblom, M.
    ACTA PHYSIOLOGICA, 2011, 201 (01) : 85 - 95
  • [6] Role of carbonic anhydrases in skin wound healing
    Barker, Harlan
    Aaltonen, Marleena
    Pan, Peiwen
    Vahatupa, Maria
    Kaipiainen, Pirkka
    May, Ulrike
    Prince, Stuart
    Uusitalo-Jarvinen, Hannele
    Waheed, Abdul
    Pastorekova, Silvia
    Sly, William S.
    Parkkila, Seppo
    Jarvinen, Tero A. H.
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2017, 49 : e334 - e334
  • [7] Carbonic Anhydrases: Role in pH Control and Cancer
    Mboge, Mam Y.
    Mahon, Brian P.
    McKenna, Robert
    Frost, Susan C.
    METABOLITES, 2018, 8 (01):
  • [8] Carbonic anhydrases of anaerobic microbes
    Ferry, James G.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2013, 21 (06) : 1392 - 1395
  • [9] Prokaryotic carbonic anhydrases
    Smith, KS
    Ferry, JG
    FEMS MICROBIOLOGY REVIEWS, 2000, 24 (04) : 335 - 366
  • [10] Acipimox inhibits human carbonic anhydrases
    Mori, Mattia
    Supuran, Claudiu T.
    JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 2022, 37 (01) : 672 - 679