A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension

被引:92
|
作者
Cao, Huai-Dong [1 ]
Li, Haizhong [2 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
SUBMANIFOLDS;
D O I
10.1007/s00526-012-0508-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a classification theorem for self-shrinkers of the mean curvature flow with |A|(2) a parts per thousand currency sign 1 in arbitrary codimension. In particular, this implies a gap theorem for self-shrinkers in arbitrary codimension.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 50 条
  • [32] Pinching Theorems for Self-Shrinkers of Higher Codimension
    Cao, Shunjuan
    Xu, Hongwei
    Zhao, Entao
    RESULTS IN MATHEMATICS, 2024, 79 (08)
  • [33] On the Rigidity of Mean Convex Self-Shrinkers
    Guang, Qiang
    Zhu, Jonathan J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (20) : 6406 - 6425
  • [34] A BERNSTEIN TYPE THEOREM FOR ANCIENT SOLUTIONS TO THE MEAN CURVATURE FLOW IN ARBITRARY CODIMENSION
    Guan, Li
    Xu, Hongwei
    Zhao, Entao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 269 - 279
  • [35] THE SECOND GAP ON COMPLETE SELF-SHRINKERS
    Cheng, Qing-Ming
    Wei, Guoxin
    Yano, Wataru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 339 - 348
  • [36] ON THE EXTENSION OF THE MEAN CURVATURE FLOW IN ARBITRARY CODIMENSION
    Han, Xiaoli
    Sun, Jun
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (11) : 1429 - 1438
  • [37] Rigidity and curvature estimates for graphical self-shrinkers
    Guang, Qiang
    Zhu, Jonathan J.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [38] Mean curvature self-shrinkers of high genus: Non-compact examples
    Kapouleas, Nikolaos
    Kleene, Stephen James
    Moller, Niels Martin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 739 : 1 - 39
  • [39] Rigidity and curvature estimates for graphical self-shrinkers
    Qiang Guang
    Jonathan J. Zhu
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [40] Lojasiewicz Inequalities for Mean Convex Self-Shrinkers
    Zhu, Jonathan J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (02) : 1236 - 1254