A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension

被引:92
|
作者
Cao, Huai-Dong [1 ]
Li, Haizhong [2 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
SUBMANIFOLDS;
D O I
10.1007/s00526-012-0508-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a classification theorem for self-shrinkers of the mean curvature flow with |A|(2) a parts per thousand currency sign 1 in arbitrary codimension. In particular, this implies a gap theorem for self-shrinkers in arbitrary codimension.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 50 条
  • [1] A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension
    Huai-Dong Cao
    Haizhong Li
    Calculus of Variations and Partial Differential Equations, 2013, 46 : 879 - 889
  • [2] Self-shrinkers for the mean curvature flow in arbitrary codimension
    Claudio Arezzo
    Jun Sun
    Mathematische Zeitschrift, 2013, 274 : 993 - 1027
  • [3] Self-shrinkers of the mean curvature flow in arbitrary codimension
    Smoczyk, K
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (48) : 2983 - 3004
  • [4] Self-shrinkers for the mean curvature flow in arbitrary codimension
    Arezzo, Claudio
    Sun, Jun
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 993 - 1027
  • [5] Noncompact self-shrinkers for mean curvature flow with arbitrary genus
    Buzano, Reto
    Nguyen, Huy The
    Schulz, Mario B.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (818): : 35 - 52
  • [6] SELF-SHRINKERS OF THE MEAN CURVATURE FLOW
    Cheng, Qing-Ming
    Peng, Yejuan
    DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS AND ITS RELATED TOPICS, 2014, : 147 - 163
  • [7] Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers
    Le, Nam Q.
    Sesum, Natasa
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (04) : 633 - 659
  • [8] Complete self-shrinkers of the mean curvature flow
    Cheng, Qing-Ming
    Peng, Yejuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 497 - 506
  • [9] Complete self-shrinkers of the mean curvature flow
    Qing-Ming Cheng
    Yejuan Peng
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 497 - 506
  • [10] Closed Embedded Self-shrinkers of Mean Curvature Flow
    Riedler, Oskar
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)