A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension

被引:92
作者
Cao, Huai-Dong [1 ]
Li, Haizhong [2 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
SUBMANIFOLDS;
D O I
10.1007/s00526-012-0508-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a classification theorem for self-shrinkers of the mean curvature flow with |A|(2) a parts per thousand currency sign 1 in arbitrary codimension. In particular, this implies a gap theorem for self-shrinkers in arbitrary codimension.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 18 条
  • [1] ABRESCH U, 1986, J DIFFER GEOM, V23, P175
  • [2] Calabi E., 1967, J. Differential Geom., V1, P111
  • [3] Cao HD, 2010, J DIFFER GEOM, V85, P175
  • [4] r-Minimal submanifolds in space forms
    Cao, Linfen
    Li, Haizhong
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 32 (04) : 311 - 341
  • [5] Generic mean curvature flow I; generic singularities
    Colding, Tobias H.
    Minicozzi, William P., II
    [J]. ANNALS OF MATHEMATICS, 2012, 175 (02) : 755 - 833
  • [6] MEAN-CURVATURE EVOLUTION OF ENTIRE GRAPHS
    ECKER, K
    HUISKEN, G
    [J]. ANNALS OF MATHEMATICS, 1989, 130 (03) : 453 - 471
  • [7] HUISKEN G, 1990, J DIFFER GEOM, V31, P285
  • [8] Huisken Gerhard, 1990, Differential geometry: partial differential equations on manifolds, V54, P175
  • [9] Le NQ, 2011, COMMUN ANAL GEOM, V19, P633
  • [10] Li HZ, 2002, MATH RES LETT, V9, P771