Thermal Link Design for Conduction Cooling of SRF Cavities Using Cryocoolers

被引:14
作者
Dhulcy, Rain C. [1 ]
Kostin, Roman [2 ]
Prokofiev, Oleg [1 ]
Geelhoed, Michael, I [1 ]
Nicol, Thomas H. [1 ]
Posen, Sam [1 ]
Thangaraj, Jayakar Charles Tobin [1 ]
Kroc, Thomas K. [1 ]
Kephart, Robert D. [1 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[2] Euclid Techlabs LLC, Bolingbrook, IL 60440 USA
关键词
Cryogenics; particle accelerator; superconducting microwave devices; thermal analysis; thermal resistance; ALUMINUM; NIOBIUM;
D O I
10.1109/TASC.2019.2901252
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Superconducting radio frequency (SRF) cavities with quality factors similar to 10(10) near 4 K have potential to be cooled using regenerative-cycle cryocoolers. Contrary to using liquid helium, cryogen-free operation can be realized by conductively linking a cryocooler to a cavity for extracting the cavity RF dissipation. The cavity-cryocooler thermal link needs careful design as its thermal conductance will control the temperatures of the cavity and the cryocooler. We present a thermal analysis of a conduction-cooled SRF cavity that identifies the link thermal conductance requirement. The analysis uses published or expected RF dissipation characteristics of an Nb3Sn coated niobium cavity and measured cooling capacity of a pulse tube cryocooler. We describe the mechanical design of a link that is constructed using commercial high-purity aluminum and facilitates bolted-connection to elliptical SRF cavities. The thermal performance of the link is assessed by finite element simulations, taking into account temperature dependent thermal conductivities and measured thermal contact resistance of aluminum and niobium. The link is shown to support operation at an accelerating gradient of 10 MV/m with the lowest-known 'perfect' Nb3Sn residual surface resistance (similar to 10 n Omega) and also under non-ideal cases that assume certain static heat leak into the system and non-perfect Nb3Sn coatings.
引用
收藏
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 2018, CRYOMECH PT420 SPECI
[2]  
Aune B., 2000, Physical Review Special Topics-Accelerators and Beams, V3, DOI 10.1103/PhysRevSTAB.3.092001
[3]   Design of a cw, low-energy, high-power superconducting linac for environmental applications [J].
Ciovati, G. ;
Anderson, J. ;
Coriton, B. ;
Guo, J. ;
Hannon, F. ;
Holland, L. ;
LeSher, M. ;
Marhauser, F. ;
Rathke, J. ;
Rimmer, R. ;
Schultheiss, T. ;
Vylet, V. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2018, 21 (09)
[4]   Thermal resistance of pressed contacts of aluminum and niobium at liquid helium temperatures [J].
Dhuley, R. C. ;
Geelhoed, M. I. ;
Thangaraj, J. C. T. .
CRYOGENICS, 2018, 93 :86-93
[5]   Thermal study of a cryogen-less MgB2 cavity [J].
Holzbauer, J. P. ;
Nassiri, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 767 :407-414
[6]  
Jain V. K., 2016, P NAPAC2016 CHIC IL, P859
[7]  
Kephart R., 2017, U.S. Patent, Patent No. [9642239 B2, 9642239]
[8]  
Kephart R., 2015, P SRF2015 WHISTL BC, P1467
[9]   Parametrization of the niobium thermal conductivity in the superconducting state [J].
Koechlin, F ;
Bonin, B .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1996, 9 (06) :453-460
[10]  
Kostin R., 2018, P 9 INT PART ACC C V, P2697