Some new bounds on LCD codes over finite fields

被引:13
作者
Pang, Binbin [1 ]
Zhu, Shixin [1 ]
Kai, Xiaoshan [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2020年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Bound; LCD code; Generator matrix; LINEAR CODES;
D O I
10.1007/s12095-019-00417-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we show that LCD codes are not equivalent to non-LCD codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD(n,2) overF3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{3}$\end{document}andF4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{4}$\end{document}, where LD(n,2) :=max{d divide thereexsitsan[n,2,d]LCDcodeoverFq}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ code~ over~ \mathbb {F}_{q}\}$\end{document}. We study the bound of LCD codes overFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document}and generalize a conjecture proposed by Galvez et al. about the minimum distance of binary LCD codes.
引用
收藏
页码:743 / 755
页数:13
相关论文
共 28 条
  • [1] On σ-LCD Codes
    Carlet, Claude
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1694 - 1704
  • [2] New Characterization and Parametrization of LCD Codes
    Carlet, Claude
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) : 39 - 49
  • [3] Euclidean and Hermitian LCD MDS codes
    Carlet, Claude
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (11) : 2605 - 2618
  • [4] Linear Codes Over Fq Are Equivalent to LCD Codes for q > 3
    Carlet, Claude
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    Pellikaan, Ruud
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 3010 - 3017
  • [5] A new concatenated type construction for LCD codes and isometry codes
    Carlet, Claude
    Guneri, Cem
    Ozbudak, Ferruh
    Sole, Patrick
    [J]. DISCRETE MATHEMATICS, 2018, 341 (03) : 830 - 835
  • [6] COMPLEMENTARY DUAL CODES FOR COUNTER-MEASURES TO SIDE-CHANNEL ATTACKS
    Carlet, Claude
    Guilley, Sylvain
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (01) : 131 - 150
  • [7] Constacyclic codes over finite commutative semi-simple rings
    Dinh, Hai Q.
    Nguyen, Bac T.
    Sriboonchitta, Songsak
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 1 - 18
  • [8] Dougherty S.T., 2017, Int. J. Inf. Coding Theory, V4, P116, DOI 10.1504/IJICOT.2017.083827
  • [9] Some bounds on binary LCD codes
    Galvez, Lucky
    Kim, Jon-Lark
    Lee, Nari
    Roe, Young Gun
    Won, Byung-Sun
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (04): : 719 - 728
  • [10] Quasi-cyclic complementary dual codes
    Guneri, Cem
    Ozkaya, Buket
    Sole, Patrick
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 : 67 - 80