A fast algorithm to compute cohomology group generators of orientable 2-manifolds

被引:6
作者
Dlotko, Pawel [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30348 Krakow, Poland
关键词
Computational cohomology; Cohomology generators; Combinatorial; 2-manifold; HOMOLOGY;
D O I
10.1016/j.patrec.2011.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a fast algorithm to compute cohomology group generators of cellular decomposition of any orientable open or closed 2-manifold is described. The presented algorithm is a dual version of algorithm to compute homology generators presented by David Eppstein in "Dynamic generators of topologically embedded graphs" and developed by Jeff Erickson and Kim Whittlesey in "Greedy optimal homotopy and homology generators". Some parts of the paper bases on ideas presented in "Optimal discrete Morse functions for 2-manifolds" by Thomas Lewiner, Helio Lopes and Geovan Tavares. Extension of the algorithm to some non-manifold cases is provided. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1468 / 1476
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 2010, Computational topology: An introduction
[2]  
Bredon G.E., 1993, Topology and Geometry
[3]   Computing homology generators for volumes using minimal generalized maps [J].
Damiand, Guillaume ;
Peltier, Samuel ;
Fuchs, Laurent .
COMBINATORIAL IMAGE ANALYSIS, 2008, 4958 :63-+
[4]  
Damiand G, 2006, LECT NOTES COMPUT SC, V4292, P235
[5]   VERIFIED HOMOLOGY COMPUTATIONS FOR NODAL DOMAINS [J].
Day, Sarah ;
Kalies, William D. ;
Wanner, Thomas .
MULTISCALE MODELING & SIMULATION, 2009, 7 (04) :1695-1726
[6]  
de Verdiere EricColin., 2003, P 11 S GRAPH DRAWING, V2912, P478
[7]  
Desbrun M, 2008, OB SEM DISCR DIFF GE
[8]   CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES [J].
Dlotko, Pawel ;
Specogna, Ruben .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) :1601-1624
[9]  
Dlotko P, 2010, CMES-COMP MODEL ENG, V60, P247
[10]  
Eppstein D, 2004, SODA 03 P 14 ANN ACM, P599