Relative equilibrium configurations of point vortices on a sphere

被引:5
作者
Demina, Maria V. [1 ]
Kudryashov, Nikolai A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Dept Appl Math, Moscow 115409, Russia
关键词
point vortices; sphere; relative equilibrium; fixed equilibrium; Platonic solids; POLYNOMIALS;
D O I
10.1134/S1560354713040023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of constructing and classifying equilibrium and relative equilibrium configurations of point vortices on a sphere is studied. A method which enables one to find any such configuration is presented. Configurations formed by the vortices placed at the vertices of Platonic solids are considered without making the assumption that the vortices possess equal in absolute value circulations. Several new configurations are obtained.
引用
收藏
页码:344 / 355
页数:12
相关论文
共 17 条
[1]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[2]   Relative equilibria of point vortices and the fundamental theorem of algebra [J].
Aref, Hassan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2132) :2168-2184
[3]   STABILITY OF THOMSON'S CONFIGURATIONS OF VORTICES ON A SPHERE [J].
Borisov, A. V. ;
Kilin, A. A. .
REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02) :189-200
[4]  
Borisov A. V., 2005, MATH METHODS DYNAMIC
[5]   Dynamics of two rings of vortices on a sphere [J].
Borisov, Alexey V. ;
Mamaev, Ivan S. .
IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 :445-458
[6]  
Borisov AV., 1998, REGUL CHAOTIC DYN, V3, P28, DOI 10.1070/rd1998v003n01ABEH000059
[7]  
Demina M. V., 2013, THEOR COMPUT F UNPUB
[8]   Point vortices and classical orthogonal polynomials [J].
Demina, Maria V. ;
Kudryashov, Nikolai A. .
REGULAR & CHAOTIC DYNAMICS, 2012, 17 (05) :371-384
[9]   Vortices and polynomials: non-uniqueness of the Adler-Moser polynomials for the Tkachenko equation [J].
Demina, Maria V. ;
Kudryashov, Nikolai A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
[10]   Point Vortices and Polynomials of the Sawada-Kotera and Kaup-Kupershmidt Equations [J].
Demina, Maria V. ;
Kudryashov, Nikolai A. .
REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06) :562-576