A Posteriori Estimates for Variational Inequalities

被引:0
作者
Repin, S. [1 ]
机构
[1] Russian Acad Sci, St Petersburg Dept, Steklov Inst Math, Fontanka 27, St Petersburg 191023, Russia
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009 | 2010年
基金
芬兰科学院;
关键词
ELLIPTIC OBSTACLE PROBLEMS; FUNCTIONAL TYPE; ERROR; FLUIDS;
D O I
10.1007/978-3-642-11795-4_81
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with guaranteed and computable error bounds for approximate solutions of variational inequalities. The estimates are derived by purely functional methods. The first method is based upon methods of convex analysis and calculus of variations and the second one derives estimates with the help of certain transformations of the corresponding variational inequality. Both methods (variational and nonvariational) has been earlier developed and applied for linear problems where they lead to the same estimates [Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, 2001]. In the paper, we shortly discuss variational inequalities associated with obstacle type problems and show that both methods also result in the same error majorants. The majorants are valid for any approximation from the admissible functional class and does not exploit Galerkin orthogonality, higher regularity of solutions, or a priori information on the structure of coincidence set. Also, the paper contains a concise overview of results related to similar a posteriori error estimates derived for other classes of nonlinear problems.
引用
收藏
页码:755 / 762
页数:8
相关论文
共 27 条
  • [1] A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS
    AINSWORTH, M
    ODEN, JT
    [J]. NUMERISCHE MATHEMATIK, 1993, 65 (01) : 23 - 50
  • [2] [Anonymous], 2000, ZAP NAUCHN SEM S PET
  • [3] [Anonymous], J MATH SCI NY
  • [4] THE ELASTIC-PLASTIC TORSION PROBLEM: A POSTERIORI ERROR ESTIMATES FOR APPROXIMATE SOLUTIONS
    Bildhauer, M.
    Fuchs, M.
    Repin, S.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (7-8) : 653 - 664
  • [5] Bildhauer M, 2008, ANN ACAD SCI FENN-M, V33, P475
  • [6] A functional type a posteriori error analysis for the Ramberg-Osgood model
    Bildhauer, Michael
    Fuchs, Martin
    Repin, Sergey
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (11-12): : 860 - 876
  • [7] A posteriori error estimators for obstacle problems - another look
    Braess, D
    [J]. NUMERISCHE MATHEMATIK, 2005, 101 (03) : 415 - 421
  • [8] A posteriori estimators for obstacle problems by the hypercircle method
    Braess, Dietrich
    Hoppe, Ronald H. W.
    Schoeberl, Joachim
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (4-6) : 351 - 362
  • [9] BUSS H, 2000, NUMERICAL MATH ADV A, P162
  • [10] Chen ZM, 2000, NUMER MATH, V84, P527, DOI 10.1007/s002119900123