Critical graphs without triangles: An optimum density construction

被引:4
作者
Pegden, Wesley [1 ]
机构
[1] NYU, Courant Inst, Dept Math, New York, NY 10012 USA
关键词
CHROMATIC NUMBER;
D O I
10.1007/s00493-013-2440-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct dense, triangle-free, chromatic-critical graphs of chromatic number k for all k a parts per thousand yen 4. For k a parts per thousand yen 6 our constructions have edges, which is asymptotically best possible by Turan's theorem. We also demonstrate (nonconstructively) the existence of dense k-critical graphs avoiding all odd cycles of length a parts per thousand currency sign a"" for any a"" and any ka parts per thousand yen4, again with a best possible density of edges for k a parts per thousand yen 6. The families of graphs without triangles or of given odd-girth are thus rare examples where we know the correct maximal density of k-critical members (k a parts per thousand yen 6).
引用
收藏
页码:495 / 513
页数:19
相关论文
共 23 条
[1]   On the structure of dense triangle-free graphs [J].
Brandt, S .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (03) :237-245
[2]  
Brandt S., DENSE TRIANGLE FREE
[3]   THE CHROMATIC NUMBER OF THE PRODUCT OF 2 4-CHROMATIC GRAPHS IS 4 [J].
ELZAHAR, M ;
SAUER, NW .
COMBINATORICA, 1985, 5 (02) :121-126
[4]  
Erdos P., 1973, Discrete Mathematics, V5, P323, DOI 10.1016/0012-365X(73)90126-X
[5]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[6]  
Erds P., 1976, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, P19
[7]   On graphs with strongly independent color-classes [J].
Gyárfás, A ;
Jensen, T ;
Stiebitz, M .
JOURNAL OF GRAPH THEORY, 2004, 46 (01) :1-14
[8]  
GYARFAS A., 2005, COMMUNICATION
[9]  
HAGGKVIST R., 1982, ANN DISCRETE MATH, V13, P89
[10]   Dense critical and vertex-critical graphs [J].
Jensen, TR .
DISCRETE MATHEMATICS, 2002, 258 (1-3) :63-84