The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence

被引:98
作者
Ejlli, A. [1 ]
Della Valle, F. [2 ,3 ]
Gastaldi, U. [4 ]
Messineo, G. [5 ]
Pengo, R. [6 ]
Ruoso, G. [6 ]
Zavattini, G. [4 ,7 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales
[2] Dip Sci Fis Terra & Ambiente, Via Roma 56, I-53100 Siena, Italy
[3] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[4] Ist Nazl Fis Nucl, Sez Ferrara, Via G Saragat 1, I-44100 Ferrara, Italy
[5] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[6] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Viale Univ 2, I-35020 Legnaro, Italy
[7] Dip Fis & Sci Terra, Via G Saragat 1, I-44100 Ferrara, Italy
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2020年 / 871卷
关键词
LIGHT IN-VACUO; THERMODYNAMICAL FLUCTUATIONS; QUANTUM ELECTRODYNAMICS; PRECISE MEASUREMENT; DETECT COLLISIONS; FREQUENCY LOCKING; CP CONSERVATION; PHOTON; FIELD; PROPAGATION;
D O I
10.1016/j.physrep.2020.06.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes the 25 year effort to measure vacuum magnetic birefringence and dichroism with the PVLAS experiment. The experiment went through two main phases: the first using a rotating superconducting magnet and the second using two rotating permanent magnets. The experiment was not able to reach the predicted value from QED. Nonetheless the experiment has set the current best limits on vacuum magnetic birefringence and dichroism for a field of B-ext = 2.5 T, namely, Delta n((PVLAS)) = (12 +/- 17) x 10(-23) and vertical bar Delta kappa vertical bar((PVLAS)) = (10 +/- 28) x 10(-23). The uncertainty on Delta n((PVLAS)) is about a factor 7 above the predicted value of Delta n((QED)) = 2.5 10(-23) @ 2.5 T.(C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1 / 74
页数:74
相关论文
共 174 条
[1]  
Aaboud M, 2017, NAT PHYS, V13, P852, DOI [10.1038/nphys4208, 10.1038/NPHYS4208]
[2]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Appert, S. ;
Arai, K. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Asada, H. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atsuta, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Avila-Alvarez, A. ;
Awai, K. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baiotti, L. .
LIVING REVIEWS IN RELATIVITY, 2018, 21
[3]   PHOTON SPLITTING IN A STRONG MAGNETIC FIELD [J].
ADLER, SL ;
BAHCALL, JN ;
CALLAN, CG ;
ROSENBLU.MN .
PHYSICAL REVIEW LETTERS, 1970, 25 (15) :1061-&
[4]   Photon splitting in a strong magnetic field: Recalculation and comparison with previous calculations [J].
Adler, SL ;
Schubert, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1695-1698
[5]   PHOTON SPLITTING AND PHOTON DISPERSION IN A STRONG MAGNETIC FIELD [J].
ADLER, SL .
ANNALS OF PHYSICS, 1971, 67 (02) :599-&
[6]   Particle interpretation of the PVLAS data: Neutral versus charged particles [J].
Ahlers, Markus ;
Gies, Holger ;
Jaeckel, Joerg ;
Ringwald, Andreas .
PHYSICAL REVIEW D, 2007, 75 (03)
[7]   Experimental investigation of high-energy photon splitting in atomic fields [J].
Akhmadaliev, SZ ;
Kezerashvili, GY ;
Klimenko, SG ;
Lee, RN ;
Malyshev, VM ;
Maslennikov, AL ;
Milov, AM ;
Milstein, AI ;
Muchnoi, NY ;
Naumenkov, AI ;
Panin, VS ;
Peleganchuk, SV ;
Pospelov, GE ;
Protopopov, IY ;
Romanov, LV ;
Shamov, AG ;
Shatilov, DN ;
Simonov, EA ;
Strakhovenko, VM ;
Tikhonov, YA .
PHYSICAL REVIEW LETTERS, 2002, 89 (06)
[8]  
Anastassopoulos V, 2017, NAT PHYS, V13, P584, DOI [10.1038/nphys4109, 10.1038/NPHYS4109]
[9]  
[Anonymous], 2009, CHEM PHYS LETT, DOI DOI 10.1016/J.CPLETT.2009.06.094
[10]  
[Anonymous], NEWS, P13