GENERAL CONSTRAINED CONSERVATION LAWS. APPLICATION TO PEDESTRIAN FLOW MODELING

被引:29
作者
Chalons, Christophe [1 ]
Goatin, Paola [2 ,3 ,4 ]
Seguin, Nicolas [2 ,3 ,4 ]
机构
[1] UPMC, CNRS, UMR 7598, Univ Paris Diderot,Lab Jacques Louis Lions, F-75205 Paris, France
[2] INRIA Sophia Antipolis Mediterranee, EPI OPALE, F-06902 Sophia Antipolis, France
[3] Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, CNRS, F-75005 Paris, France
[4] INRIA Paris Rocquencourt, Equipe ANGE, F-78153 Le Chesnay, France
关键词
Constrained scalar conservation laws; finite volume schemes; non-classical shocks; macroscopic pedestrian flow models; Braess paradox; APPROXIMATION;
D O I
10.3934/nhm.2013.8.433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the results on conservation laws with local flux constraint obtained in [1, 9] to general flux functions and nonclassical solutions arising for example in pedestrian flow modeling. We first define the constrained Riemann solver and the entropy condition, which singles out the unique admissible solution. We provide a well posedness result based on wave-front tracking approximations and Kruzhkov doubling of variable technique. We then provide the framework to deal with nonclassical solutions and we propose a front-tracking finite volume scheme allowing to sharply capture classical and nonclassical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.
引用
收藏
页码:433 / 463
页数:31
相关论文
共 33 条
[1]   ANALYSIS OF A BURGERS EQUATION WITH SINGULAR RESONANT SOURCE TERM AND CONVERGENCE OF WELL-BALANCED SCHEMES [J].
Andreianov, Boris ;
Seguin, Nicolas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :1939-1964
[2]   A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux [J].
Andreianov, Boris ;
Hvistendahl, Kenneth Karlsen ;
Risebro, Nils Henrik .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (01) :27-86
[3]   Finite volume schemes for locally constrained conservation laws [J].
Andreianov, Boris ;
Goatin, Paola ;
Seguin, Nicolas .
NUMERISCHE MATHEMATIK, 2010, 115 (04) :609-645
[4]  
[Anonymous], 1967, Mat. Sb, V73, P255
[5]  
[Anonymous], 1996, APPL MATH MATH COMPU
[6]  
[Anonymous], 2002, Applied Mathematical Sciences
[7]  
Braess D., 1968, Unternehmensforschung, V12, P258, DOI DOI 10.1007/BF01918335
[8]  
Bressan A., 2000, Oxford Lecture Series in Mathematics and Its Applications
[9]   A family of numerical schemes for kinematic flows with discontinuous flux [J].
Burger, R. ;
Garcia, A. ;
Karlsen, K. H. ;
Towers, J. D. .
JOURNAL OF ENGINEERING MATHEMATICS, 2008, 60 (3-4) :387-425
[10]   ERROR ESTIMATE FOR GODUNOV APPROXIMATION OF LOCALLY CONSTRAINED CONSERVATION LAWS [J].
Cances, Clement ;
Seguin, Nicolas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3036-3060