WEIGHTED ITERATED DISCRETE HARDY-TYPE INEQUALITIES

被引:5
作者
Omarbayeva, B. K. [1 ]
Persson, L-E [2 ,3 ]
Temirkhanova, A. M. [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Dept Fundamental Math, Satpayev Str 2, Astana 010000, Kazakhstan
[2] UIT Arctic Univ Norway, Dept Comp Sci & Computat Engn, Tromso, Norway
[3] Karlstad Univ, Dept Math & Comp Sci, Karlstad, Sweden
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 03期
关键词
Inequalities; Hardy-type operator; weights; discrete Lebesgue spaces; characterizations;
D O I
10.7153/mia-2020-23-73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions on functions u and omega are established ensuring boundedness of a discrete Hardy-type operator from a weighted sequence space l(p,u) to a weighted sequence space for a wide range of the numerical parameters p,u and theta.
引用
收藏
页码:943 / 959
页数:17
相关论文
共 15 条
[1]   WEIGHTED NORM INEQUALITIES FOR CERTAIN INTEGRAL-OPERATORS [J].
ANDERSEN, KF ;
HEINIG, HP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1983, 14 (04) :834-844
[2]   SOME ELEMENTARY INEQUALITIES [J].
BENNETT, G .
QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (152) :401-425
[3]   SOME ELEMENTARY INEQUALITIES .3. [J].
BENNETT, G .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (166) :149-174
[4]   ON THE DISCRETE HARDY INEQUALITY [J].
BRAVERMAN, MS ;
STEPANOV, VD .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :283-287
[5]   NECESSARY AND SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF THE HARDY-TYPE OPERATOR FROM A WEIGHTED LEBESGUE SPACE TO A MORREY-TYPE SPACE [J].
Burenkov, V. I. ;
Oinarov, R. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01) :1-19
[6]  
Grosse-Erdmann K.-G., 1998, Lecture Notes in Mathematics, V1679
[7]  
Hardy G. H., 1925, MESSENGER MATH, V54, P150, DOI DOI 10.1007/BF01199965.[
[8]  
Kufner A., 2007, HARDY INEQUALITY ITS
[9]  
Kufner A., 2017, WEIGHTED INEQUALITIE, DOI DOI 10.1142/10052
[10]   The prehistory of the hardy inequality [J].
Kufner, Alois ;
Maligranda, Lech ;
Persson, Lars-Erik .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (08) :715-732