Global optimization by multilevel coordinate search

被引:377
作者
Huyer, W [1 ]
Neumaier, A [1 ]
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
global optimization; bound constraints; local optimization; coordinate search;
D O I
10.1023/A:1008382309369
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Inspired by a method by Jones et al. (1993), we present a global optimization algorithm based on multilevel coordinate search. It is guaranteed to converge if the function is continuous in the neighborhood of a global minimizer. By starting a local search from certain good points, an improved convergence result is obtained. We discuss implementation details and give some numerical results.
引用
收藏
页码:331 / 355
页数:25
相关论文
共 30 条
[1]  
[Anonymous], OPTIKA
[2]  
BELISLE CJP, 1990, 9025 U MICH DEP IND
[3]  
Boender C. G. E., 1995, HDB GLOBAL OPTIMIZAT, V2, P829
[4]   A STOCHASTIC METHOD FOR GLOBAL OPTIMIZATION [J].
BOENDER, CGE ;
KAN, AHGR ;
TIMMER, GT ;
STOUGIE, L .
MATHEMATICAL PROGRAMMING, 1982, 22 (02) :125-140
[5]  
Brent R. P., 2002, Algorithms for Minimization without Derivatives
[6]   Subdivision direction selection in interval methods for global optimization [J].
Csendes, T ;
Ratz, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :922-938
[7]  
Dixon L. C. W., 1978, Towards Global Optimization, V2, P1
[8]   A GRID ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION OF NOISY FUNCTIONS [J].
ELSTER, C ;
NEUMAIER, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1995, 15 (04) :585-608
[9]   GLOBAL OPTIMIZATION BY MULTILEVEL SEARCH [J].
GOERTZEL, B .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :423-432
[10]  
Hansen Eldon R., 1992, Global optimization using interval analysis