The Hopf Galois Property in Subfield Lattices

被引:6
作者
Crespo, Teresa [1 ]
Rio, Anna [2 ]
Vela, Montserrat [2 ]
机构
[1] Univ Barcelona, Dept Algebra & Geometria, E-08007 Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 2, Barcelona, Spain
关键词
Holomorph; Hopf algebra; Hopf Galois extension; SEPARABLE FIELD-EXTENSIONS;
D O I
10.1080/00927872.2014.982809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K/k be a finite separable extension, n its degree and (K) over tilde /k its Galois closure. For n <= 5, Greither and Pareigis show that all Hopf Galois extensions are either Galois or almost classically Galois and they determine the Hopf Galois character of K/ k according to the Galois group (or the degree) of (K) over tilde /k. In this paper we study the case n = 6, and intermediate extensions F/ k such that K subset of F subset of (K) over tilde, for degrees n = 4, 5, 6. We present an example of a non almost classically Galois Hopf Galois extension of (sic) of the smallest possible degree and new examples of Hopf Galois extensions. In the last section we prove a transitivity property of the Hopf Galois condition.
引用
收藏
页码:336 / 353
页数:18
相关论文
共 7 条