Symmetry-breaking bifurcation analysis of stochastic van der pol system via Chebyshev polynomial approximation

被引:8
作者
Ma, Shaojuan [1 ,2 ]
Xu, Wei [1 ]
Jin, Yanfei [1 ]
Li, Wei [1 ]
Fang, Tong [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
[2] Second NW Univ Nationalities, Dept Informat & Computat Sci, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Chebyshev polynomial; Stochastic van der Pol system; Symmetry-breaking bifurcation; Probability density function;
D O I
10.1016/j.cnsns.2005.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chebyshev polynomial approximation is applied to the symmetry-breaking bifurcation problem of a stochastic van der Pol system with bounded random parameter subjected to harmonic excitation. The stochastic system is reduced into an equivalent deterministic system, of which the responses can be obtained by numerical methods. Nonlinear dynamical behaviors related to various forms of stochastic bifurcations in stochastic system are explored and studied numerically. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:366 / 378
页数:13
相关论文
共 28 条
[1]  
Benaroya H., 1988, Apply Mesh Rev, V41, P201
[2]  
Borwein P., 1995, Grad. Texts in Math., V161
[4]   Chebyshev polynomial approximation for dynamical response problem of random system [J].
Fang, T ;
Leng, XL ;
Song, CQ .
JOURNAL OF SOUND AND VIBRATION, 2003, 266 (01) :198-206
[5]  
FLAHERTY JE, 1978, STUD APPL MATH, V58, P5
[6]   SINGULAR PERTURBATIONS AND A MAPPING ON AN INTERVAL FOR THE FORCED VANDERPOL RELAXATION-OSCILLATOR [J].
GRASMAN, J ;
NIJMEIJER, H ;
VELING, EJM .
PHYSICA D, 1984, 13 (1-2) :195-210
[7]  
Guckenheimer J., 1983, NONLINEAR OSCILLATOR
[8]  
HAYASHI C, 1964, NONLINEAR OSCILLATOR
[9]   BIFURCATIONS OF FORCED VANDERPOL OSCILLATOR [J].
HOLMES, PJ ;
RAND, DA .
QUARTERLY OF APPLIED MATHEMATICS, 1978, 35 (04) :495-509
[10]  
JACKSON EA, 1990, PERSPECTIVES NONLINE, V2