Donor-acceptor photovoltaic polymers based on 1,4-dithienyl-2,5-dialkoxybenzene with intramolecular noncovalent interactions

被引:8
作者
Chen, Xue-Qiang [1 ]
Yao, Xiang [1 ]
Bai, Tianwen [2 ]
Ling, Jun [2 ]
Xiao, Wen-Jing [1 ]
Wang, Jiandong [1 ]
Wu, Si-Cheng [1 ]
Liu, Li-Na [1 ]
Xie, Guanghui [3 ]
Li, Jingjing [3 ]
Lu, Zhengquan [3 ]
Visoly-Fisher, Iris [4 ]
Katz, Eugene A. [4 ]
Li, Wei-Shi [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Organ Chem, Ctr Excellence Mol Synth, Key Lab Synthet & Self Assembly Chem Organ Funct, 345 Lingling Rd, Shanghai 200032, Peoples R China
[2] Zhejiang Univ, Dept Polymer Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhengzhou Inst Technol, Engn Res Ctr Zhengzhou High Performance Organ Fun, 6 Yingcai St, Zhengzhou 450044, Henan, Peoples R China
[4] Ben Gurion Univ Negev, Swiss Inst Dryland Environm & Energy Res, Jacob Blaustein Inst Desert Res BIDR, Dept Solar Energy & Environm Phys, Sede Boqer Campus, IL-8499000 Midreshet Ben Gurion, Israel
基金
中国国家自然科学基金;
关键词
1,4-dithienyl-2,5-dialkoxybenzene; donor-acceptor conjugated polymers; intramolecular non-covalent interactions; polymer solar cells; HETEROJUNCTION SOLAR-CELLS; 25TH ANNIVERSARY ARTICLE; FIELD-EFFECT TRANSISTORS; CONJUGATED POLYMERS; PERFORMANCE; COPOLYMERS; OLIGOTHIOPHENES; THIOPHENE; DESIGN; FUSION;
D O I
10.1002/pola.28959
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Donor-acceptor (D-A) conjugated polymers bearing non-covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4-dithienyl-2,5-dialkoxybenzene (TBT) is a typical moiety possessing intramolecular S...O interactions and thus a restricted planar configuration, it was used in this work as an electron-donating unit to combine with the following electron-accepting units: 3-fluorothieno[3,4-b]thiophene (TFT), thieno-[3,4-c]pyrrole-4,6-dione (TPD), and diketopyrrolopyrrole (DPP) for the construction of such D-A conjugated polymers. Therefore, the so-designed three polymers, PTBTTFT, PTBTTPD, and PTBTDPP, were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE=1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest-lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM-blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). (c) 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 689-698
引用
收藏
页码:689 / 698
页数:10
相关论文
共 39 条
[1]   Oligothienoacenes versus oligothiophenes: impact of ring fusion on the optical properties [J].
Arago, Juan ;
Viruela, Pedro M. ;
Gierschner, Johannes ;
Orti, Enrique ;
Milian-Medina, Begona .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (04) :1457-1465
[2]   Processable Low-Bandgap Polymers for Photovoltaic Applications [J].
Boudreault, Pierre-Luc T. ;
Najari, Ahmed ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :456-469
[3]   Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor [J].
Carle, Jon Eggert ;
Andreasen, Jens Wenzel ;
Jorgensen, Mikkel ;
Krebs, Frederik Christian .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (05) :774-780
[4]   Long-term thermally stable organic solar cells based on cross-linkable donor-acceptor conjugated polymers [J].
Chen, Xue-Qiang ;
Yao, Xiang ;
Xiang, Xuan ;
Liang, Long ;
Shao, Wei ;
Zhao, Fu-Gang ;
Lu, Zhengquan ;
Wang, Wenwu ;
Lic, Jingjing ;
Li, Wei-Shi .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (23) :9286-9292
[5]   Charge Photogeneration in Organic Solar Cells [J].
Clarke, Tracey M. ;
Durrant, James R. .
CHEMICAL REVIEWS, 2010, 110 (11) :6736-6767
[6]   Low bandgap conjugated polymers based on mono-fluorinated isoindigo for efficient bulk heterojunction polymer solar cells processed with non-chlorinated solvents [J].
Deng, Yunfeng ;
Li, Weili ;
Liu, Lihui ;
Tian, Hongkun ;
Xie, Zhiyuan ;
Geng, Yanhou ;
Wang, Fosong .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (02) :585-591
[7]   Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics [J].
Dou, Letian ;
Liu, Yongsheng ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
CHEMICAL REVIEWS, 2015, 115 (23) :12633-12665
[8]   25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research [J].
Dou, Letian ;
You, Jingbi ;
Hong, Ziruo ;
Xu, Zheng ;
Li, Gang ;
Street, Robert A. ;
Yang, Yang .
ADVANCED MATERIALS, 2013, 25 (46) :6642-6671
[9]   Medium band gap conjugated polymers from thienoacene derivatives and pentacyclic aromatic lactam as promising alternatives of poly(3-hexylthiophene) in photovoltaic application [J].
Gao, Peili ;
Tong, Junfeng ;
Guo, Pengzhi ;
Li, Jianfeng ;
Wang, Ningning ;
Li, Cheng ;
Ma, Xuying ;
Zhang, Peng ;
Wang, Chenglong ;
Xia, Yangjun .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2018, 56 (01) :85-95
[10]   Conjugated polymer-based organic solar cells [J].
Guenes, Serap ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
CHEMICAL REVIEWS, 2007, 107 (04) :1324-1338