Qutrit magic state distillation

被引:57
作者
Anwar, Hussain [1 ]
Campbell, Earl T. [2 ]
Browne, Dan E. [1 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
英国工程与自然科学研究理事会;
关键词
Quantum computers;
D O I
10.1088/1367-2630/14/6/063006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic state distillation (MSD) is a purification protocol that plays an important role in fault-tolerant quantum computation. Repeated iteration of the steps of an MSD protocol generates pure single non-stabilizer states, or magic states, from multiple copies of a mixed resource state using stabilizer operations only. Thus mixed resource states promote the stabilizer operations to full universality. MSD was introduced for qubit-based quantum computation, but little has been known concerning MSD in higher-dimensional qudit-based computation. Here, we describe a general approach for studying MSD in higher dimensions. We use it to investigate the features of a qutrit MSD protocol based on the five-qutrit stabilizer code. We show that this protocol distils non-stabilizer magic states, and identify two types of states that are attractors of this iteration map. Finally, we show how these states may be converted, via stabilizer circuits alone, into a state suitable for state-injected implementation of a non-Clifford phase gate, enabling non-Clifford unitary computation.
引用
收藏
页数:25
相关论文
共 37 条
[1]   Implementation of Clifford gates in the Ising-anyon topological quantum computer [J].
Ahlbrecht, Andre ;
Georgiev, Lachezar S. ;
Werner, Reinhard F. .
PHYSICAL REVIEW A, 2009, 79 (03)
[2]  
[Anonymous], 2009, PROOFS BOOK
[3]   Spectra of phase point operators in odd prime dimensions and the extended Clifford group [J].
Appleby, D. M. ;
Bengtsson, Ingemar ;
Chaturvedi, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (01)
[4]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Geometry of density matrix states [J].
Boya, Luis J. ;
Dixit, Kuldeep .
PHYSICAL REVIEW A, 2008, 78 (04)
[7]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[8]   Catalysis and activation of magic states in fault-tolerant architectures [J].
Campbell, Earl T. .
PHYSICAL REVIEW A, 2011, 83 (03)
[9]  
Campbell ET, 2009, LECT NOTES COMPUT SC, V5905, P20, DOI 10.1007/978-3-642-10698-9_3
[10]   Bound States for Magic State Distillation in Fault-Tolerant Quantum Computation [J].
Campbell, Earl T. ;
Browne, Dan E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)