Reconfiguring the Imaging Pipeline for Computer Vision

被引:71
作者
Buckler, Mark [1 ]
Jayasuriya, Suren [2 ]
Sampson, Adrian [1 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2017年
关键词
D O I
10.1109/ICCV.2017.111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advancements in deep learning have ignited an explosion of research on efficient hardware for embedded computer vision. Hardware vision acceleration, however, does not address the cost of capturing and processing the image data that feeds these algorithms. We examine the role of the image signal processing (ISP) pipeline in computer vision to identify opportunities to reduce computation and save energy. The key insight is that imaging pipelines should be be configurable: to switch between a traditional photography mode and a low-power vision mode that produces lower-quality image data suitable only for computer vision. We use eight computer vision algorithms and a reversible pipeline simulation tool to study the imaging system's impact on vision performance. For both CNN-based and classical vision algorithms, we observe that only two ISP stages, demosaicing and gamma compression, are critical for task performance. We propose a new image sensor design that can compensate for these stages. The sensor design features an adjustable resolution and tunable analog-to-digital converters (ADCs). Our proposed imaging system's vision mode disables the ISP entirely and configures the sensor to produce subsampled, low-erprecision image data. This vision mode can save similar to 75% of the average energy of a baseline photography mode with only a small impact on vision task accuracy.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 45 条
[31]  
Clapp MatthewA., 2004, Focal-Plane Analog Image Processing, P141
[32]  
Deng J., 2009, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2009.5206848
[33]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[34]   Biologically Inspired Optical-Flow Sensing for Altitude Control of Flapping-Wing Microrobots [J].
Duhamel, Pierre-Emile J. ;
Perez-Arancibia, Nestor O. ;
Barrows, Geoffrey L. ;
Wood, Robert J. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (02) :556-568
[35]   Convolutional networks for fast, energy-efficient neuromorphic computing [J].
Esser, Steven K. ;
Merolla, Paul A. ;
Arthur, John V. ;
Cassidy, Andrew S. ;
Appuswamy, Rathinakumar ;
Andreopoulos, Alexander ;
Berg, David J. ;
McKinstry, Jeffrey L. ;
Melano, Timothy ;
Barch, Davis R. ;
di Nolfo, Carmelo ;
Datta, Pallab ;
Amir, Arnon ;
Taba, Brian ;
Flickner, Myron D. ;
Modha, Dharmendra S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) :11441-11446
[36]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[37]   A New In-Camera Imaging Model for Color Computer Vision and Its Application [J].
Kim, Seon Joo ;
Lin, Hai Ting ;
Lu, Zheng ;
Suesstrunk, Sabine ;
Lin, Stephen ;
Brown, Michael S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (12) :2289-2302
[38]  
Krizhevsky A., 2009, LEARNING MULTIPLE LA
[39]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[40]   Ultra-low-power image signal processor for smart camera applications [J].
Liu, Z. ;
Park, T. ;
Park, H. S. ;
Kim, N. S. .
ELECTRONICS LETTERS, 2015, 51 (22) :1778-1779